zbMATH — the first resource for mathematics

Towards an inverse scattering theory for two-dimensional nondecaying potentials. (English. Russian original) Zbl 0951.35118
Theor. Math. Phys. 116, No. 1, 741-781 (1998); translation from Teor. Mat. Fiz. 116, No. 1, 3-53 (1998).
Summary: The inverse scattering method is considered for the nonstationary Schrödinger equation with a potential \(u(x_1,x_2)\) nondecaying in a finite number of directions in the \(x\) plane. The general resolvent approach, which is particularly convenient for this problem, is tested using a potential that is the Bäcklund transformation of an arbitrary decaying potential and that describes a solution superimposed on an arbitrary background. In this example, the resolvent, Jost solutions, and spectral data are explicitly constructed, and their properties are analyzed. The characterization equations satisfied by the spectral data are derived, and the unique solution of the inverse problem is obtained. The asymptotic potential behavior at large distances is also studied in detail. The obtained resolvent is used in a dressing procedure to show that with more general nondecaying potentials, the Jost solutions may have an additional cut in the spectral-parameter complex domain. A necessary and sufficient condition for the absence of this additional cut is formulated.

35Q53 KdV equations (Korteweg-de Vries equations)
37K15 Inverse spectral and scattering methods for infinite-dimensional Hamiltonian and Lagrangian systems
81U40 Inverse scattering problems in quantum theory
Full Text: DOI
[1] V. S. Dryuma,JETP Letters,19, 381 (1974).
[2] V. E. Zakharov and A. B. Shabat,Funct. Anal. Appl.,8, 226 (1974). · Zbl 0303.35024
[3] B. B. Kadomtsev and V. I. Petviashvili,Sov. Phys. Doklady,192, 539 (1970).
[4] M. J. Ablowitz and P. A. Clarkson, ”Solitons, nonlinear evolution equations and inverse scattering,” in:Lecture Notes Series, Vol. 49, Cambridge Univ., Cambridge (1991). · Zbl 0762.35001
[5] B. G. Konopelchenko,Solitons in Multidimensions, World Scientific, Singapore (1993). · Zbl 0836.35002
[6] V. E. Zakharov and S. V. Manakov,Sov. Sci. Rev. A,1, 133 (1979); S. V. Manakov,Physica D,3, 420 (1981).
[7] A. S. Fokas and M. J. Ablowitz,Stud. Appl. Math.,69, 211 (1983).
[8] M. J. Ablowitz and J. Villarroel,Stud. Appl. Math.,85, 195 (1991).
[9] M. Boiti, F. Pempinelli, and A. Pogrebkov,Inverse Problems,10, 505 (1994). · Zbl 0806.35152
[10] M. Boiti, F. Pempinelli, and A. Pogrebkov,J. Math. Phys.,35, 4683 (1994). · Zbl 0814.35116
[11] M. Boiti, J. Léon, and F. Pempinelli,Phys. Lett. A,141, 96 (1989).
[12] M. Boiti, F. Pempinelli, A. K. Progrebkov, and M. C. Polivanov,Inverse Problems,8, 331 (1992). · Zbl 0755.35109
[13] S. V. Manakov, V. E. Zakharov, L. A. Bordag, A. R. Its, and V. B. Matveev,Phys. Lett. A,63, 205 (1977).
[14] B. A. Dubrovin, T. M. Malanyuk, I. M. Krichever, and V. G. Makhankov,Sov. J. Part. Nucl.,19, 252 (1988).
[15] A. S. Fokas and V. E. Zakharov,J. Nonlinear Sci.,2, 109 (1992). · Zbl 0872.58032
[16] J. M. Ghidaglia and J. C. Saut,Nonlinearity,3, 475 (1990). · Zbl 0727.35111
[17] M. Boiti, J. Léon, L. Martina, and F. Pempinelli,Phys. Lett. A,132, 432 (1988).
[18] M. Boiti, L. Martina, and F. Pempinelli,Chaos. Solitons, and Fractals,5, 2377 (1995). · Zbl 1080.35108
[19] M. Boiti, F. Pempinelli, A. K. Pogrebkov, and M. C. Polivanov, ”Resolvent approach for the nonstationary Schrödinger equation. Standard case of rapidly decreasing potential,” in:Nonlinear Evolution Equations and Dynamical Systems (M. Boiti, L. Martina, and F. Pempinelli, eds.), World Scientific, Singapore (1992), p. 97. · Zbl 0941.35503
[20] M. Boiti, F. Pempinelli, A. K. Pogrebkov, and M. C. Polivanov,Theor. Math. Phys.,93, 1200 (1992). · Zbl 0806.35131
[21] M. Boiti, F. Pempinelli, and A. Pogrebkov,Theor. Math. Phys.,99, 511 (1994). · Zbl 0850.35094
[22] M. Boiti, F. Pempinelli, and A. Pogrebkov, ”Spectral theory of solitons on a generic background for the KPI equation,” in:Nonlinear Physics. Theory and Experiment (E. Alfinito, M. Boiti, L. Martina, and F. Pempinelli, eds.), World Scientific, Singapore (1996), p. 37. · Zbl 0941.35534
[23] M. Boiti, F. Pempinelli, and A. Pogrebkov,Inverse Problems,13, L7 (1997). · Zbl 0879.35133
[24] V. B. Matveev and M. A. Salle,Darboux Transformations and Solitons, Springer, Berlin (1991). · Zbl 0744.35045
[25] M. Boiti, F. Pempinelli, A. K. Pogrebkov, and M. C. Polivanov,Inverse Problems,7, 43 (1991). · Zbl 0726.58042
[26] M. Boiti, F. Pempinelli, and A. Porgrebkov,Physica D,87, 123 (1995). · Zbl 1194.35398
[27] A. S. Fokas and A. K. Pogrebkov, unpublished.
[28] V. D. Lipovsky,Funct. Anal. Appl.,20, 282 (1986). · Zbl 0675.35072
[29] Xin Zhou,Commun. Math. Phys.,128, 551 (1990). · Zbl 0702.35241
[30] M. Boiti, B. Konopelchenko, and F. Pempinelli,Inverse Problems,1, 33 (1985). · Zbl 0615.58042
[31] I. M. Gelfand and G. E. Shilov,Generalized Functions, Vol. 1,Properties and Operations, Acad. Press, New York (1964).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.