×

zbMATH — the first resource for mathematics

The Colombeau generalized nonlinear analysis and the Schwartz linear distribution theory. (English) Zbl 0951.46018
Author’s abstract: We adopt the elementary definition of the Colombeau algebra which was developed by J. Aragona and J. F. Colombeau [J. Math. Anal. Appl. 110, 179-199 (1985; Zbl 0596.46028)] and J. F. Colombeau [“Elementary introduction to new generalized functions”, North-Holland Math. Studies 113, Amsterdam (1985; Zbl 0584.46024)]. Unlike these works, we define an imbedding of the space \(C(\Omega)\) of continuous functions, and then also the space of distributions \({\mathcal D}(\Omega)\), into the algebra \({\mathcal G}(\Omega)\) somewhat differently: our definition is close to that used by M. Oberguggenberger [“Multiplications of distributions and applications to partial differential equations”, Pitman Research Notes Math., Vol. 259, New York (1992; Zbl 0818.46036)] and is based on the elementary concept of convolution of a continuous function and a smooth function with compact support.…
The present paper is divided into nine sections. The material of Section 1 is classical: it is shown that the space of smooth functions with compact supports (i.e., test functions) is large enough, and some properties of the convolution of functions are recalled. In Section 2, we define the Colombeau algebra of generalized functions on an open set in \(\mathbb{R}^n\) and establish its main properties. In Section 3, we introduce an algebra of generalized numbers so that Colombeau’s generalized functions assume values at individual points and can be integrated over compact sets. Also, in this section, we study solutions of algebraic equations within the framework of Colombeau’s theory. In Section 4, we define nonlinear operations of polynomial growth over generalized functions, composition of generalized functions, and restriction of generalized functions to linear subspaces. In Section 5, we present distributions which are defined as those generalized functions in Colombeau’s sense which locally (on every relatively compact open subset) can be represented as partial derivatives of continuous functions. Using the integration theory for generalized functions developed in Section 3, we obtain the classical formulation of distributions in a way that is accepted in Schwartz’ distribution theory. Then, in Section 6, we establish some of the classical properties of distributions which, in particular, allow us to display in Section 6.9 the natural character of the construction of the Colombeau algebra. The difficulties related to the problem of multiplication of distributions are described in Section 7, where, in particular, the Schwartz impossibility result is treated in more detail. As we have already mentioned, many classical operations (multiplication, composition, restriction, etc.) are necessarily changed in the algebra \({\mathcal G}(\Omega)\), so, in Section 8, all these operations are recovered by means of the following two specific concepts: the equality in the sense of generalized distributions and the equality in the sense of the association. Finally, in Section 9, we present some further properties of the association: multiplication by the Dirac \(\delta\) function, characterization of the product of distributions in the Colombeau algebra; also, the Heaviside generalized functions and the Dirac generalized functions are defined, and examples of discontinuous solutions to a first-order system in the conservative form are considered. In concluding our paper, we enumerate some recent papers (as known by the author) not mentioned in the body of this paper, which contribute to Colombeau’s theory and related theories of generalized functions.

MSC:
46F30 Generalized functions for nonlinear analysis (Rosinger, Colombeau, nonstandard, etc.)
46F10 Operations with distributions and generalized functions
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] M. Adamczewski, J. F. Colombeau and A. Y. Le Roux, ”Convergence of numerical schemes involving powers of the Dirac delta function”,J. Math. Anal. Appl.,145, No. 1, 172–185 (1990). · Zbl 0691.65067
[2] R. A. Adams,Sobolev Spaces, Academic Press, New York, (1975).
[3] W. Ambrose, ”Products of distributions with values in distributions”,J. Reine Angew. Math.,315, 73–91 (1980). · Zbl 0422.46033
[4] A. B. Antonevich and Ya. V. Radyno, ”On a general method for constructing algebras of generalized functions”,Sov. Math. Dokl.,43, No. 3, 680–684 (1991). Translated fromDokl. Ross. Akad. Nauk,318, No. 2, 267–270 (1991). · Zbl 0862.46019
[5] P. Antosik, J. Mikusiński, and R. Sikorski,Theory of Distributions. The Sequential Approach, Elsevier, Amsterdam (1973). · Zbl 0267.46028
[6] J. Aragona, ”Théorèmes d’existence pour l’opérateur \(\bar \partial \) sur les formes différentielles généralisées”,C. R. Acad. Sci., Sér. I,300, No. 8, 239–242 (1985). · Zbl 0617.46044
[7] J. Aragona, ”On existence theorems for the \(\bar \partial \) operator on generalized differential forms”,Proc. London Math. Soc.,53, No. 3, 474–488 (1986). · Zbl 0652.35014
[8] J. Aragona and H. A. Biagioni, ”Intrinsic definition of the Colombeau algebra of generalized functions”,Anal. Math.,17, No. 2, 75–132 (1991). · Zbl 0765.46019
[9] J. Aragona and J. F. Colombeau, ”On the \(\bar \partial \) -Neumann problem for generalized functions”,J. Math. Anal. Appl.,110, No. 1, 179–199 (1985). · Zbl 0596.46028
[10] J. Aragona and J. F. Colombeau, ”The interpolation theorem for holomorphic generalized functions”,Ann. Polon. Math.,49, No. 2, 151–156 (1988). · Zbl 0691.46031
[11] Y. A. Barka, J. F. Colombeau, and B. Perrot, ”A numerical modelling of the fluid/fluid acoustic dioptra”,J. d’Acoustique,2, No. 4, 333–346 (1989).
[12] L. Berg, ”Multiplication of distributions”,Math. Nachr.,76, 195–202 (1977). · Zbl 0346.46032
[13] L. Berg, ”Taylor’s expansion in a distribution algebra”,Z. Anal. Anwend.,2, No. 3, 265–271 (1983). · Zbl 0515.46036
[14] H. A. Biagioni, ”The Cauchy problem for semilinear hyperbolic systems with generalized functions as initial conditions”,Results Math.,14, No. 3/4, 231–241 (1988). · Zbl 0666.35058
[15] H. A. Biagioni,A Nonlinear Theory of Generalized Functions, Lecture Notes Math., Vol 1421 (1990). · Zbl 0694.46032
[16] H. A. Biagioni, ”Generalized solutions to nonlinear first-order systems”,Monatsh. Math.,118, Nos. 1–2, 7–20 (1994). · Zbl 0807.35020
[17] H. A. Biagioni and J. F. Colombeau, ”Borel’s theorem for generalized functions”,Stud. Math.,81, No. 2, 179–183 (1985). · Zbl 0627.46049
[18] H. A. Biagioni and J. F. Colombeau, ”Whitney’s extension theorem for generalized functions”,J. Math. Anal. Appl.,114, No. 2, 574–583 (1986). · Zbl 0603.46044
[19] H. A. Biagioni and J. F. Colombeau, ”New generalized functions andC functions with values in generalized complex numbers”,J. London Math. Soc. (2),33, No. 1, 169–179 (1986). · Zbl 0594.46035
[20] H. A. Biagioni and M. Oberguggenberger, ”Generalized solutions to Burgers’ equation”,J. Diff. Equations,97, No. 2, 263–287 (1992). · Zbl 0777.35071
[21] H. A. Biagioni and M. Oberguggenberger, ”Generalized solutions to the Korteweg-de Vries and the regularized long-wave equations”,SIAM J. Math. Anal.,23, No. 4, 923–940 (1992). · Zbl 0757.35068
[22] N. N. Bogoliubow and O. S. Parasiuk, ”Über die Multiplikation der Kausalfunktion in der Quantentheorie der Felder”,Acta Math.,77, No. 3, 227–266 (1957). · Zbl 0081.43302
[23] N. N. Bogolyubov, A. A. Logunov, A. I. Oksak, and I. T. Todorov,General Principles of the Quantum Field Theory [in Russian], Nauka, Moscow (1987). · Zbl 0732.46040
[24] J. J. Cauret, J. F. Colombeau, and A. Y. Le Roux, ”Solutions généralisées discontinues de problèmes hyperboliques non conservatifs”,C. R. Acad. Sci., Sér. I,302, No. 12, 435–437 (1986). · Zbl 0598.35067
[25] J. J. Cauret, J. F. Colombeau, and A. Y. Le Roux ”Discontinuous generalized solutions of nonlinear nonconservative hyperbolic equations”,J. Math. Anal. Appl.,139, No. 2, 552–573 (1989). · Zbl 0691.35057
[26] R. A. Cerutti,Distributional products, Preprint Trab. Mat. / Inst. Argent. Mat.,179, 1–16 (1991).
[27] L. Z. Cheng and B. Fisher, ”Several products of distributions on \(\mathbb{R}\) m ”Proc. Roy. Soc. London, Ser. A 426, No. 1871, 425–439 (1989). · Zbl 0693.46048
[28] V. V. Chistyakov, ”The Cauchy problem for a parabolic equation with nonlinear irregularity”,Mosc. Univ. Math. Bull.,41, No. 3, 54–59 (1986). · Zbl 0662.35058
[29] V. V. Chistyakov, ”On weak solutions to Burgers’-type equations with nonsmooth data”,Mat. Zametki,58, No. 3, 471–476 (1995). · Zbl 0849.35117
[30] V. V. Chistyakov, ”Some products of distributions in the Colombeau algebra of generalized functions”, In:Actual Problems of Modern Mathematics: A Collection of Papers [in Russian], Vol. 1. NII MIOO NGU, Novosibirsk (1995), pp. 175–184. · Zbl 0917.46035
[31] V. V. Chistyakov, ”Travelling wave and delta wave solutions to the Riemann problem for a conservative system”, In:Actual Problems of Modern Mathematics: A Collection of Papers [in Russian], Vol. 2, NII MIOO NGU, Novosibirsk (1996), to appear.
[32] Chr. Christov and Bl. Damyanov, ”Multiplication of generalized functions”,Math. Meth. Theor. Phys.,5 (1989).
[33] J. F. Colombeau,Differential Calculus and Holomorphy. Real and Complex Analysis in Locally Convex Spaces, North-Holland Math. Studies, Vol. 64, Amsterdam (1982). · Zbl 0506.46001
[34] J. F. Colombeau, ”New generalized functions. Multiplication of distributions. Physical applications. Contribution of J. Sebastião e Silva”,Portugal. Math.,41, Nos. 1–4, 57–69 (1982). · Zbl 0599.46056
[35] J. F. Colombeau, ”Une multiplication générale des distributions”,C. R. Acad. Sci., Sér. I,296, No. 8, 357–360 (1983). · Zbl 0532.46018
[36] J. F. Colombeau, ”A multiplication of distributions”,J. Math. Anal. Appl.,94, No. 1, 96–115 (1983). · Zbl 0519.46045
[37] J. F. Colombeau,New Generalized Functions and Multiplication of Distributions, North-Holland Math. Studies, Vol. 84, Amsterdam (1984). · Zbl 0532.46019
[38] J. F. Colombeau,New general existence results for partial differential equations in the C case, Preprint, University of Bordeaux (1984).
[39] J. F. Colombeau,Elementary Introduction to New Generalized Functions, North-Holland Math. Studies, Vol. 113, Amsterdam (1985). · Zbl 0584.46024
[40] J. F. Colombeau, ”Nouvelles solutions d’équations aux dérivées partielles”,C. R. Acad. Sci., Sér. I,301, No. 6, 281–283 (1985). · Zbl 0601.35014
[41] J. F. Colombeau, ”A new theory of generalized functions”, In: J. Mujica (ed.),Complex Analysis, Functional Analysis, and Approximation Theory, North-Holland Math. Studies, Vol. 125, Amsterdam (1986), pp. 57–65.
[42] J. F. Colombeau, ”Some aspects of infinite-dimensional holomorphy in mathematical physics”, In: J. A. Barroso (ed.),Aspects of Mathematics and Its Applications, Amsterdam (1986), pp. 253–263. · Zbl 0609.46025
[43] J. F. Colombeau, ”Introduction to ’new generalized functions’ and multiplication of distributions,” In: H. Hogbe-Nlend (ed.),Functional Analysis and Its Applications, ICPAM Lecture Notes; Nice, France, Aug. 25–Sept. 20, 1986, World Scientific Publ. Co., Singapore (1988), pp. 338–380.
[44] J. F. Colombeau, ”Generalized functions; multiplication of distributions; applications to elasticity, elastoplasticity, fluid dynamics and acoustics,” In: B. Stanković, E. Pap, S. Pilipović, and V. S. Vladimirov (eds.),Generalized Functions, Convergence Structures, and Their Applications, Intern. Conf., June 23–27 (1987) in Dubrovnik, Yugoslavia, Plenum Press, New York (1988), pp. 13–27. · Zbl 0761.46023
[45] J. F. Colombeau, ”Multiplication de distributions et acoustique,”J. d’Acoustique, 1, Nos. 1–2, 9–14 (1988).
[46] J. F. Colombeau, ”The elastoplastic shock problem as an example of the resolution of ambiguities in the multiplication of distributions,”J. Math. Phys.,30, No. 10, 2273–2279 (1989). · Zbl 0711.73050
[47] J. F. Colombeau, ”Multiplication of distributions,”Bull. Amer. Math. Soc.,23, No. 2, 251–268 (1990). · Zbl 0731.46023
[48] J. F. Colombeau,Multiplication of Distributions: A Tool in Mathematics, Numerical Engineering and Theoretical Physics, Lecture Notes Math., Vol. 1532 (1992). · Zbl 0815.35002
[49] J. F. Colombeau and J. E. Galé, ”Holomorphic generalized functions,”J. Math. Anal. Appl.,103, No. 1, 117–133 (1984). · Zbl 0564.46031
[50] J. F. Colombeau and J. E. Galé, ”Analytic continuation of generalized functions,”Acta Math. Hung.,52, Nos. 1–2, 57–60 (1988). · Zbl 0662.46047
[51] J. F. Colombeau and A. Heibig,Nonconservative products in bounded variation functions, Preprint, No. 39, École Normale Supérieure de Lyon (1990).
[52] J. F. Colombeau and A. Heibig, ”Generalized solutions to Cauchy problems,”Monatsh. Math.,117, Nos. 1–2, 33–49 (1994). · Zbl 0831.35002
[53] J. F. Colombeau, A. Heibig, and M. Oberguggenberger,Generalized solutions to partial differential equations of evolution type, Preprint, No. 54, École Normale Supérieure de Lyon (1991). · Zbl 0877.35026
[54] J. F. Colombeau, A. Heibig, and M. Oberguggenberger, ”Le problème de Cauchy dans un espace de fonctions généralisées. I,”C. R. Acad. Sci., Sér. I,317, No. 9, 851–855 (1993). · Zbl 0790.35015
[55] J. F. Colombeau, A. Heibig, and M. Oberguggenberger, ”Le problème de Cauchy dans un espace de fonctions généralisées. II,”C. R. Acad. Sci., Sér. I,319, No. 11, 1179–1183 (1994). · Zbl 0826.46028
[56] J. F. Colombeau and M. Langlais, ”Existence et unicité de solutions d’équations paraboliques non unéaires avec conditions initiales distributions,”C. R. Acad. Sci., Sér. I,302, No. 10, 379–382 (1986). · Zbl 0596.35064
[57] J. F. Colombeau and M. Langlais, ”Generalized solutions of nonlinear parabolic equations with distributions as initial conditions,”J. Math. Anal. Appl.,145, No. 1, 186–196 (1990). · Zbl 0701.35042
[58] J. F. Colombeau, J. Laurens, and B. Perrot, ”Une méthode numérique de résolution des équations de l’acoustique dans un milieu à caractéristiquesC par morceaux,” In:Colloque de Physique, Colloque C 2, supplément au t.51, No. 2 (1990), pp. 1227–1230.
[59] J. F. Colombeau and A. Y. Le Roux, ”Numerical techniques in elastoplasticity,” In:Nonlinear Hyperbolic Problems, Lecture Notes Math., Vol. 1270, (1987), pp. 103–114. · Zbl 0644.73039
[60] J. F. Colombeau and A. Y. Le Roux, ”Multiplications of distributions in elasticity and hydrodynamics,”J. Math. Phys.,29, No. 2, 315–319 (1988). · Zbl 0646.76007
[61] J. F. Colombeau, A. Y. Le Roux, A. Noussair, and B. Perrot, ”Microscopic profiles of shock waves and ambiguities in multiplications of distributions,”SIAM J. Numer. Anal.,26, No. 4, 871–883 (1989). · Zbl 0674.76049
[62] J. F. Colombeau, A. Y. Le Roux, and B. Perrot, ”Multiplication de distributions et ondes de choc élastiques ou hydrodynamiques en dimension un,”C. R. Acad. Sci., Sér. I,305, No. 11, 453–456 (1987). · Zbl 0631.76072
[63] J. F. Colombeau and M. Oberguggenberger, ”On a hyperbolic system with a compatible quadratic term: generalized solutions, delta waves, and multiplication of distributions,”Commun. Part. Diff. Equat.,15, No. 7, 905–938 (1990). · Zbl 0711.35028
[64] J. F. Colombeau and M. Oberguggenberger,Approximate generalized solutions and measure valued solutions to conservation laws, Preprint, No. 37, École Normale Supériure de Lyon (1990). · Zbl 0711.35028
[65] G. Dal Maso, Ph. Le Floch, and F. Murat,Definition and weak stability of nonconservative products, Preprint CMAP-CNRS, R. I. No. 272, Ecole Polytechnique, Palaiseau (France) (1993).
[66] Bl. P. Damyanov, ”The sheaf structure of Schwartz distributions,” In:Complex Analysis and Generalized Functions. 5th Intern. Conf. Varna, Sept. 15–21, 1991, Sofia (1993), pp. 33–42.
[67] P. A. M. Dirac, ”The physical interpretation of the quantum dynamics,”Proc. Roy. Soc. London A,113, 621–641 (1927). · JFM 53.0846.01
[68] P. A. M. Dirac, ”The quantum theory of the emission and absorption of radiation,”Proc. Roy. Soc. London A,114, 243–265 (1927). · JFM 53.0847.01
[69] D. B. Dix, ”Nonuniqueness and uniqueness in the initial-value problem for Burgers’ equations,”SIAM J. Math. Anal.,27, No. 3, 708–724 (1996). · Zbl 0852.35123
[70] R. E. Edwards,Functional Analysis. Theory and Applications, Holt, Rinehart and Winston, New York, (1965). · Zbl 0182.16101
[71] Yu. V. Egorov, ”On generalized functions and linear differential equations,”Vestn. MGU, Ser. I, No. 2, 92–95 (1990).
[72] Yu. V. Egorov, ”A contribution to the theory of generalized functions,”Usp. Mat. Nauk,45, No. 5, 3–40 (1990).
[73] L. Ehrenpreis, ”Solutions of some problems of division I,”Amer. J. Math.,76, 883–903 (1954). · Zbl 0056.10601
[74] H. G. Embacher, G. Grübl, and M. Oberguggenberger ”Products of distributions in several variables and applications to zero-mass QED2,”Z. Anal. Anwendungen,11, No. 4, 437–454 (1992). · Zbl 0790.46023
[75] B. Fisher, ”The product of distributions”Quart. J. Math Oxford, Ser. (2),22 No. 86, 291–298 (1971). · Zbl 0213.13104
[76] B. Fisher, ”The product of the distributions x and {\(\delta\)}(r)(x),”Proc. Cambridge Philos. Soc.,72, No. 2, 201–204 (1972). · Zbl 0239.46031
[77] B. Fisher, ”Neutrices and the product of distributions,”Stud. Math.,57, 263–274 (1976). · Zbl 0339.46030
[78] B. Fisher, ”On defining the product of distributions,”Math. Nachr.,99, 239–249 (1980). · Zbl 0468.46027
[79] G. B. Folland,Real Analysis. Modern Techniques and Their Applications, John Wiley & Sons, New York (1984). · Zbl 0549.28001
[80] I. M. Gel’fand and G. E. Shilov,Generalized Functions, Vol. 1, Academic Press, New York (1964). · Zbl 0115.33101
[81] A. Gonzalez Domingues and R. Scarfiello, ”Nota sobre la formula \(v.p.\tfrac{1}{x} \cdot \delta = - \tfrac{1}{2}\delta '\) ,”Rev. Un. Mat. Argentina,1, 53–67 (1956). · Zbl 0072.31902
[82] T. Gramchev, ”Semilinear hyperbolic systems and equations with singular initial data,”Monatsh. Math.,112, 99–113 (1991). · Zbl 0747.35020
[83] T. Gramchev, ”Nonlinear maps in spaces of distributions,”Math. Z.,209 No. 1, 101–114 (1992). · Zbl 0744.46021
[84] T. Gramchev, ”Le problème de Cauchy pour des systèmes hyperboliques non-linéaires avec données initiales distributions,”Bulgar. Math. Dokl.,45, No. 8, 1–5 (1992).
[85] T. Gramchev,Entropy solutions to conservation laws with singular initial data, Preprint (1992). · Zbl 0832.35091
[86] A. Heibig and M. Moussaoui, ”Generalized and classical solutions of nonlinear parabolic equations,”Nonlinear Anal. Theory. Meth. Appl.,24, No. 6, 789–794 (1995). · Zbl 0830.35047
[87] E. Hopf, ”The partial differential equation,u t +uu x ={\(\mu\)}u xx ,”Commun. Pure Appl. Math.,3, No. 3, 201–230 (1950). · Zbl 0039.10403
[88] L. Hörmander, ”On the division of distributions by polynomials.,”Ark. Mat.,3, No. 54, 555–568 (1958). · Zbl 0131.11903
[89] L. Hörmander,The Analysis of Linear Partial Differential Operators. Vol. I.Distribution Theory and Fourier Analysis, Springer-Verlag, Berlin-New York (1983).
[90] M. Itano, ”On the multiplicative products of distributions,”J. Sci. Hiroshima Univ., Ser. A-I,29, No. 1, 51–74 (1965). · Zbl 0141.31902
[91] M. Itano, ”On the theory of multiplicative products of distributions,”J. Sci. Hiroshima Univ., Ser. A-I,30, No. 2, 151–181 (1966). · Zbl 0145.38502
[92] M. Itano, ”Remarks on the multiplicative products of distributions,”Hiroshima Math. J.,6, No. 2, 365–375 (1976). · Zbl 0346.46033
[93] V. K. Ivanov, ”Hyperdistributions and multiplication of Schwartz distributions,”Dokl. Akad. Nauk SSSR,204, No. 5, 1045–1048 (1972). · Zbl 0261.46041
[94] V. K. Ivanov, ”An associative algebra of the simplest generalized functions,”Sib. Mat. Zh.,20, No. 4, 731–740 (1979). · Zbl 0431.46029
[95] J. Jelínek, ”Characterisation of the Colombeau product of distributions,”Comment. Math. Univ. Carolin.,27, No. 2, 377–394 (1986). · Zbl 0612.46034
[96] J. Jelínek, ”Distinguishing example for the Tillman product of distributions,”Comment. Math. Univ. Carolin.,31, No. 4, 693–700 (1990). · Zbl 0742.46021
[97] E. Kadłubowska and R. Wawak, ”Local order functions and regularity of the product of distributions,”Bull. Acad. Polon. Sci., Ser. Math.,32, No. 9, 523–533 (1984). · Zbl 0574.46029
[98] A. Kamiński, ”On convolutions, products and Fourier transforms of distributions,”Bull. Acad. Polon. Sci., Ser Math.,25, No. 4, 369–374 (1977). · Zbl 0357.46045
[99] A. Kamiński, ”On the product \(\tfrac{1}{{x^k }} \cdot \delta ^{(l - 1)} (x)\) ,”Bull. Acad. Polon. Sci., Ser. Math.,25, No. 4, 375–379 (1977). · Zbl 0357.46046
[100] A. Kamiński, ”On the exchange formula,”Bull. Acad. Polon. Sci., Ser. Math.,26, No. 1, 19–24 (1978). · Zbl 0377.46031
[101] A. Kamiński, ”Remarks on delta- and unit-sequences,”Bull. Acad. Polon. Sci., Ser. Math.,26, No. 1, 25–30 (1978). · Zbl 0377.46030
[102] A. Kamiński, ”Convolution, product and Fourier transform of distributions,”Stud. Math.,74, No. 1, 83–96 (1982). · Zbl 0499.46022
[103] A. Kamiński, ”On model delta-sequences and the product of distributions,” In:Complex Analysis and Generalized Functions. 5th Intern. Conf. Varna, Sept. 15–21, 1991, Sofia (1993), pp. 148–155.
[104] K. Keller, ”Irregular operations in quantum field theory. I. Multiplication of distributions,”Rep. Math. Phys.,14, No. 3, 285–309 (1978). · Zbl 0421.46032
[105] A. V. Kim, ”Generalized solutions of nonlinear differential equations,”Izv. Vuzov, Mat., No. 5, 58–63 (1987). · Zbl 0629.34008
[106] C. O. Kiselman, ”Sur la définition de l’opérateur de Monge-Ampère complexe,” In: Lecture Notes Math., Vol. 1094 (1984), pp. 139–150.
[107] H. König, ”Neue Begründung der Theorie der ’Distributionen’ von L. Schwartz,”Math. Nachr.,9, 129–148 (1953). · Zbl 0050.33802
[108] H. König, ”Multiplikation von Distributionen. I,”Math. Ann.,128, 420–452 (1955). · Zbl 0064.11303
[109] F. Lafon and M. Oberguggenberger, ”Generalized solutions to symmetric hyperbolic systems with discontinuous coefficients: the multidimensional case,”J. Math. Anal. Appl.,160, No. 1 93–106 (1991). · Zbl 0766.35067
[110] M. Langlais, ”Generalized functions solutions of monotone and semilinear parabolic equations,”Monatsh. Math.,110, No. 2, 117–136 (1990). · Zbl 0727.35071
[111] J. Laurens, ”Une modélisation numérique du dioptre acoustique liquide solide,”Colloque de Physique, Colloque C 2, supplément au t.51, No. 2, 1219–1222 (1990).
[112] Ph. Le Floch, ”Solutions faibles entropiques des systèmes hyperboliques non linéaires sous form non conservative,”C. R. Acad. Sci., Sér. I,306, No. 4, 181–186 (1988). · Zbl 0683.35050
[113] Ph. Le Floch, ”Entropy weak solutions to nonlinear hyperbolic systems under nonconservative form,”Commun. Part. Diff. Equat.,13, No. 6, 669–727 (1988). · Zbl 0683.35049
[114] Ph. Le Floch and T.-P. Liu, ”Existence theory for nonlinear hyperbolic systems in nonconservative form,”Forum Math.,5, 261–280 (1993). · Zbl 0804.35086
[115] H. Lewy, ”An example of a smooth linear partial differential equation without solution,”Ann. Math.,66, No. 1, 155–158 (1957). · Zbl 0078.08104
[116] Li Bang-He, ”Nonstandard analysis and multiplication of distributions,”Sci. Sinica,21, No. 5, 561–585 (1978). · Zbl 0392.46026
[117] Li Bang-He, ”On the Moire problem from the distributional point of view,”J. Sys. Sci. Math. Sci.,6, No. 4, 263–268 (1986). · Zbl 0659.28014
[118] Li Bang-He and Li Yaqing, ”Nonstandard analysis and multiplication of distributions in any dimension,”Sci. Sinica (Ser. A),28, No. 7, 716–726 (1985). · Zbl 0597.46034
[119] Li Bang-He and Li Yaqing, ”On the harmonic and analytic representations of distributions,”Sci. Sinica (Ser.A),28, No. 9, 923–937 (1985). · Zbl 0597.46039
[120] Li Bang-He and Li Yaqing, ”New generalized functions in nonstandard framework,”Acta Math. Sci.,12, No. 3, 260–269 (1992). · Zbl 0779.46037
[121] J. Ligęza, ”Generalized solutions of ordinary linear differential equations in the Colombeau algebra,”Math. Bohem.,118, No. 2, 123–146 (1993).
[122] J. Ligęza, ”Generalized solutions of boundary value problems for ordinary linear differential equations of second order in the Colombeau algebra,” In:Dissertationes Math. (Rozprawy Mat.). Pap. Conf. ”Different Aspects of Differentiability,” 1993, Warsaw, Sept. 13–18, No. 340 (1995), pp. 183–194.
[123] Li Yaqing, ”What can a product of distribution zero and itself be?”Syst. Sci. Math. Sci.,3, No. 4, 381–383 (1990). · Zbl 0735.46024
[124] J. J. Lodder, ”A simple model for a symmetrical theory of generalized functions. I: Definition of singular generalized functions. II: Operators on generalized functions,”Physica A,116, No. 1, 45–58. 59–73 (1982). · Zbl 0521.46029
[125] J. J. Lodder, ”A simple model for a symmetrical theory of generalized functions. III: Products of generalized functions. IV: Some extensions and conclusions. V: Some applications,”Physica A,116, No. 3, 380–391, 392–403, 404–410 (1982). · Zbl 0521.46031
[126] S. Lojasiewicz, ”Sur la valeur et la limite d’une distribution dans un point,”Stud. Math.,16, No. 1, 1–36 (1957). · Zbl 0086.09405
[127] S. Lojasiewicz, ”Sur la fixation des variables dans une distribution,”Stud. Math.,17, 1–64 (1958). · Zbl 0086.09501
[128] G. Lysik, ”On the regularity of the product of distributions,”Bull. Polish Acad. Sci. Math.,35, Nos. 3–4 203–210 (1987).
[129] B. Malgrange, ”Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution,”Ann. Inst. Fourier,6, 271–355 (1955). · Zbl 0071.09002
[130] A. Marzouk,Régularité de solutions généralisées d’équations différentielles algébriques, Thesis, Bordeaux (1989).
[131] A. Marzouk and B. Perrot,Regularity results for generalized solutions of algebraic equations and algebraic differential equations, Preprint.
[132] V. P. Maslov, ”Three algebras corresponding to nonsmooth solutions of systems of quasilinear hyperbolic equations,”Usp. Mat. Nauk,35, No. 2, 252–253 (1980).
[133] V. P. Maslov, ”Nonstandard characteristics in asymptotic problems,”Usp. Mat. Nauk,38, No. 2, 3–36 (1983).
[134] V. P. Maslov and G. A. Omel’yanov, ”Asymptotic soliton-form solutions of equations with small dispersion,”Usp. Mat. Nauk,36, No. 3, 63–126 (1981).
[135] V. P. Maslov and V. A. Tsupin, ”Necessary conditions for the existence of infinitesimally narrow solitons in gas dynamics,”Dokl. Akad. Nauk SSSR,246, No. 2, 298–300 (1979). · Zbl 0437.76064
[136] V. P. Maslov and V. A. Tsupin, ”{\(\delta\)}-Shaped Sobolev generalized solutions of quasilinear equations,”Usp. Mat. Nauk,34, No. 1, 235–236 (1979). · Zbl 0466.35017
[137] V. G. Maz/ya,S. L. Sobolev Spaces, Springer-Verlag, Springer Series in Soviet Mathematics (1985).
[138] G. H. Meisters, ”Linear operators commuting with translations on \(\mathcal{D}(\mathbb{R})\) are continuous,”Proc. Amer. Math. Soc.,106, No. 4, 1079–1083 (1989). · Zbl 0682.42009
[139] J. Mikusiński, ”Irregular operations on distributions,”Stud. Math.,20, No. 2, 163–169 (1961). · Zbl 0198.46301
[140] J. Mikusiński, ”Criteria of the existence and the associativity of the product of distributions,”Stud. Math.,21, No. 3, 253–259 (1962). · Zbl 0115.33103
[141] J. Mikusiński, ”On the square of the Dirac delta-distribution,”Bull. Acad. Polon. Sci., Sér. Math.,14, No. 9, 511–513 (1966). · Zbl 0163.36404
[142] M. Nedeljkov, ”The Fourier transformation in some subspaces of Colombeau’s generalized functions,” In:Complex Analysis and Generalized Functions. 5th Intern. Conf. Varna, Sept. 15–21, 1991, Sofia (1993), pp. 219–228. · Zbl 0790.46026
[143] M. Nedeljkov and S. Pilipović, ”Convolution in Colombeau’s spaces of generalized functions. Part I: The space \(\mathcal{G}_a \) and thea-integral. Part II: The convolution in \(\mathcal{G}_a \) ,”Publ. Inst. Math.,52, 95–104, 105–112 (1992). · Zbl 0790.46024
[144] M. Oberguggenberger, ”Multiplication of distributions in the Colombeau algebra \(\mathcal{G}( \otimes )\) ,”Boll. Unione Mat. Ital. (6),5-A, No. 3, 423–429 (1986). · Zbl 0611.46049
[145] M. Oberguggenberger, ”Products of distributions,”J. Reine Angew. Math.,365, 1–11 (1986). · Zbl 0573.46019
[146] M. Oberguggenberger, ”Weak limits of solutions to semilinear hyperbolic systems,”Math. Ann.,274, No. 4, 599–607 (1986). · Zbl 0597.35012
[147] M. Oberguggenberger, ”Solutions généralisées de systèmes hyperboliques semilinéaires,”C. R. Acad. Sci., Sér. I,305, No. 1, 17–18 (1987). · Zbl 0649.35056
[148] M. Oberguggenberger, ”Generalized solutions to semilinear hyperbolic systems,”Monatsh. Math.,103, No. 2, 133–144 (1987). · Zbl 0615.35054
[149] M. Oberguggenberger, ”Hyperbolic systems with discontinuous coefficients: examples,” In: B. Stanković, E. Pap, S. Pilipović, and V. S. Vladimirov (eds.),Generalized Functions, Convergence Structures, and Their Applications, Intern. Conf., June 23–27 (1987) in Dubrovnik, Yugoslavia, Plenum Press, New York (1988), pp. 257–266.
[150] M. Oberguggenberger, ”Products of distributions: nonstandard methods.Z. Anal. Anwendungen,7, No. 4, 347–365 (1988) Corrections to this article:Z. Anal. Anwendungen,10, 263–264 (1991). · Zbl 0662.46048
[151] M. Oberguggenberger, ”Systèmes hyperboliques à coefficients discontinus: solutions généralisées et une application à l’acoustique linéaire,”C. R. Math. Rep. Acad. Sci. Canada,10, No. 3, 143–148 (1988). · Zbl 0678.35064
[152] M. Oberguggenberger, ”Hyperbolic systems with discontinuous coefficients: generalized solutions and a transmission problem in acoustics,”J. Math. Anal. Appl.,142, No. 2, 452–467 (1989). · Zbl 0705.35146
[153] M. Oberguggenberger, ”Semilinear wave equations with rough initial data: generalized solutions,” In: P. Antosik and A. Kamiński (eds.),Generalized Functions and Convergence, World Scientific Publ., Singapore (1990), pp. 181–203.
[154] M. Oberguggenberger, ”The Carleman system with positive measures as initial data – generalized solutions,”Transp. Theory Statist. Phys.,20, Nos. 2 & 3, 177–197 (1991). · Zbl 0735.35033
[155] M. Oberguggenberger, ”Case study of a nonlinear, nonconservative, nonstrictly hyperbolic system,”Nonlinear Anal. Theory. Math. Appl,19, No. 1, 53–79 (1992). · Zbl 0790.35065
[156] M. Oberguggenberger,Multiplication of Distributions and Applications to Partial Differential Equations, Pitman Research Notes Math., Vol. 259, Longman, Harlow (1993). · Zbl 0818.46036
[157] M. Oberguggenberger, ”Generalized functions and stochastic processes,” In:Proceedings of Conference on Stochastic Analysis, to appear. · Zbl 0829.46025
[158] M. Oberguggenberger and Y.-G. Wang, ”Generalized solutions to conservation laws,”Z. Anal. Anwend.,13, No. 1, 7–18 (1994). · Zbl 0794.35102
[159] P. A. Panzone, ”On the product of distributions,”Notas de Algebra y Analisis, Univ. Nacional del Sur, Bahia Blanca,16, i-vi, 1–73 (1990).
[160] S. Pilipović, ”Pseudo-differential operators and the microlocalization in the space of Colombeau’s generalized functions,”Bull. Acad. Serbe Sci. Arts Cl. Sci. Math. Natur.,20, 13–27 (1995). · Zbl 0849.46027
[161] Ya. V. Radyno and Ngo Fu Tkhan’, ”Differential equations in an algebra of new generalized functions,”Dokl. Akad. Nauk Belarusi,37, No. 4 5–9 (1993). · Zbl 0793.46017
[162] Ya. V. Radyno, Ngo Fu Tkhan’, and Sabra Ramadan, ”Fourier transform in an algebra of new generalized functions,”Dokl. Ross. Akad. Nauk,327, No. 1, 20–24 (1992). · Zbl 0813.46033
[163] Ya. V. Radyno and Nguen Hoî Ngia, ”The Cauchy problem in the space of generalized functions of J. Colombeau,”Dokl. Akad. Nauk Belarusi,34, No. 6, 489–492 (1990). · Zbl 0736.46031
[164] C. K. Raju, ”Products and compositions with the Dirac delta function,”J. Phys. A: Math. Gen.,15, No. 2, 381–396 (1982). · Zbl 0479.46024
[165] R. D. Richtmyer,Principles of Advanced Mathematical Physics, Vol. 1, Springer-Verlag, New York (1978). · Zbl 0402.46001
[166] J.-P. Rosay, ”A very elementary proof of the Malgrange-Ehrenpreis theorem,”Amer. Math. Monthly,98, No. 6, 518–523 (1991). · Zbl 0768.35010
[167] E. E. Rosinger,Distributions and Nonlinear Partial Differential Equations, Lecture Notes Math., Vol. 684 (1978). · Zbl 0469.35001
[168] E. E. Rosinger,Nonlinear Partial Differential Equations. Sequential and Weak Solutions, North-Holland Math. Studies, Vol. 44, Amsterdam (1980). · Zbl 0447.35001
[169] E. E. Rosinger,Generalized Solutions of Nonlinear Partial Differential Equations, North-Holland Math. Studies, Vol. 146, Amsterdam (1987). · Zbl 0635.46033
[170] E. E. Rosinger, ”Global version of the Cauchy-Kovalevskaia theorem for nonlinear PDEs,”Acta Appl. Math.,21, No. 3, 331–343 (1990). · Zbl 0733.35002
[171] E. E. Rosinger,Non-Linear Partial Differential Equations. An Algebraic View of Generalized Solutions, North-Holland Math. Studies, Amsterdam (1992).
[172] E. E. Rosinger, ”Characterization for the solvability of nonlinear partial differential equations,”Trans. Amer. Math. Soc.,330, 203–225 (1992). · Zbl 0792.35003
[173] L. A. Rubel, ”Solutions of algebraic differential equations,”J. Diff. Equat.,49, No. 3, 441–452 (1983). · Zbl 0509.12025
[174] L. A. Rubel, ”Some research problems about algebraic differential equations,”Trans. Amer. Math. Soc.,280, No. 1, 43–52 (1983). · Zbl 0532.34009
[175] L. A. Rubel, ”Generalized solutions of algebraic differential equations,”J. Diff. Equat.,62, No. 2, 242–251 (1986). · Zbl 0613.34011
[176] W. Rudin,Functional Analysis, McGraw-Hill, New York (1973). · Zbl 0253.46001
[177] P. Schapira, ”Une équation aux dérivées partielles sans solutions dans l’espace des hyperfonctions,”C. R. Acad. Sci., Sér. A,265, No. 21, 665–667 (1967). · Zbl 0153.16602
[178] L. Schwartz, ”Sur l’impossibilité de la multiplication des distributions”C. R. Acad. Sci.,239, No. 15, 847–848 (1954). · Zbl 0056.10602
[179] L. Schwartz,Théorie des Distributions, Nouvelle édition, Hermann, Paris (1973).
[180] V. M. Shelkovich, ”An algebra of distributions and generalized solutions of nonlinear equations,”Dokl. Ross. Akad. Nauk,342, No. 5, 600–602 (1995). · Zbl 0892.46040
[181] R. Shiraishi, ”On the value of a distribution at a point and multiplicative products,”J. Sci. Hiroshima Univ., Ser. A-I,31, No. 1, 89–104 (1967). · Zbl 0153.16404
[182] R. Shiraishi and M. Itano, ”On the multiplicative products of distributions,”J. Sci. Hiroshima Univ., Ser. A-I,28, No. 2, 223–235 (1964). · Zbl 0141.31901
[183] J. Smoller,Shock Waves and Reaction-Diffusion Equatins, Grundlehren Math. Wissen., Vol. 258, Springer-Verlag, New York (1983). · Zbl 0508.35002
[184] S. L. Sobolev, ”Methode nouvelle à resoudre le problème de Cauchy pour les équations linéaires hyperboliques normales,”Mat. Sb.,1, No. 1, 39–72 (1936).
[185] S. L. Sobolev,Some Applications of Functional Analysis in the Mathematical Physics [in Russian], Nauka, Moscow (1988). · Zbl 0662.46001
[186] S. L. Sobolev,Selected Questions of the Theory of Functional Spaces and Generalized Functions [in Russian], Nauka, Moscow (1989). · Zbl 0667.46025
[187] K. D. Stroyan and W. A. J. Luxemburg,Introduction to the Theory of Infinitesimals, Pure Appl. Math. Vol.72, Academic Press, New York (1976). · Zbl 0336.26002
[188] A. Takaĉi, ”New generalized functions ofK 1{M p } type,”Univ. Novom Sadu. Zb. Rad. Prirod.-Mat. Fak. Ser. Mat.,23, No. 2, 129–140 (1993). · Zbl 0830.46032
[189] D. Takaĉi and A. Takaĉi, ”An operational calculus in Colombeau’s new generalized functions,”Bull. Appl. Math.,57, 153–161 (1991).
[190] T. D. Todorov, ”Asymptotic functions as kernels of the Schwartz distributions”Bulgar. J. Phys.,12, No. 5, 451–464 (1985). · Zbl 0602.46043
[191] T. D. Todorov, ”The products {\(\delta\)}2(x),{\(\delta\)}(x){\(\times\)}x , {\(\theta\)}(x){\(\times\)}x , etc. in the class of the asymptotic functions,”Bulgar. J. Phys.,12, No. 5, 465–480 (1985). · Zbl 0602.46044
[192] T. D. Todorov,Sequential approach to Colombeau’s theory of generalized functions, ICTP, Trieste, Preprint IC/87/126 (1987).
[193] T. D. Todorov, ”Colombeau’s generalized functions and non-standard analysis,” In: B. Stanković, E. Pap, S. Pilipović, and V. S. Vladimirov (eds.),Generalized Functions, Convergence Structures, and Their Applications, Intern. Conf. June 23–27 (1987) in Dubrovnik, Yugoslavia, Plenum Press, New York, (1988), pp. 327–339. · Zbl 0749.46047
[194] T. D. Todorov, ”A nonstandard delta function,”Proc. Amer. Math. Soc.,110, No. 4, 1143–1144 (1990). · Zbl 0744.26017
[195] T. D. Todorov, ”Pointwise kernels of Schwartz distribution,”Proc. Amer. Math. Soc.,114, No. 3, 817–819 (1992). · Zbl 0751.03037
[196] T. D. Todorov, ”An existence result for linear partial differential equations withC coefficients in an algebra of generalized functions,”Trans. Amer. Math. Soc.,348, No. 2, 673–689 (1996). · Zbl 0909.35029
[197] J. Tysk, ”Comparison of two methods of multiplying distributions,”Proc. Amer. Math. Soc.,93, No. 1, 35–39 (1985). · Zbl 0581.46029
[198] V. Valmorin, ”Fonctions généralisées périodiques et problème de Goursat,”C. R. Acad. Sci. Sér. I,320, No. 5, 537–540 (1995). · Zbl 0836.46029
[199] V. Valmorin ”A new algebra of periodic generalized functions,”Z. Anal. Anwend.,15, No. 1, 57–74 (1996). · Zbl 0842.46021
[200] V. A. Vinokurov, ”Changes of variables and multiplication of generalized functions,”Dokl. Akad. Nauk SSSR,319, No. 5, 1057–1064 (1991).
[201] V. S. Vladimirov,Generalized Functions in Mathematical Physics [in Russian], Mir, Moscow (1979). · Zbl 0515.46033
[202] P. Wagner, ”On the multiplication and convolution of homogenous distributions,”Rev. Colombiana Mat.,24, Nos. 3–4 183–198 (1990). · Zbl 0737.46031
[203] R. Wawak, ”Some remarks about the product of distributions,”Bull. Acad. Polon. Sci., Ser. Math.,32, Nos. 3–4 179–183 (1984). · Zbl 0558.46023
[204] R. Wawak, ”Improper integrals of distributions,”Stud. Math.,86, No. 3, 205–220 (1987). · Zbl 0643.46030
[205] R. Wawak, ”On the Value of a distribution at a point,” In: B. Stanković, E. Pap, S. Pilipović, and V. S. Vladimirov (eds.),Generalized Functions, Convergence Structures, and Their Applications, Intern. Conf., June 23–27 (1987) in Dubrovnik, Yugoslavia, Plenum Press, New York (1988), pp. 359–364.
[206] R. Wawak, ”On the Colombeau product of distributions,” In: P. Antosik and A. Kamiński (eds.),Generalized Functions and Convergence, World Scientific Publ., Singapore (1990).
[207] Zhao Baoheng, ”Solutions of the Schrödinger equation with {\(\delta\)}-function potential and product of distributions,”J. China Univ. Sci. Tech.,23, No. 1, 27–30 (1993). · Zbl 0787.34065
[208] W. P. Ziemer,Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation, Graduate Texts in Math., Vol. 120, Springer-Verlag, New York (1989). · Zbl 0692.46022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.