×

Relaxation to equilibrium of conservative dynamics. I: Zero-range processes. (English) Zbl 0951.60095

The decay rate to equilibrium in the variance sense is derived for symmetric zero range processes in \(\mathbb{Z}^d\) under weak assumptions. For any local function \(u\) it is shown to be of the form \(C_ut^{-d/2}+ o(t^{-d/2})\). An explicit representation of \(C_u\) is given. Basic ingredients of the proof are the spectral gap for the processes on finite boxes and a Nash inequality.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
82B05 Classical equilibrium statistical mechanics (general)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] AIZENMAN, M. and HOLLEY, R. 1987. Rapid convergence to equilibrium of the stochastic Ising model in the Dobrushin Shlosman regime. IMS Vol. in Math. Appl. 8 1 11. Springer, New York. · Zbl 0621.60118
[2] ANDJEL, E. 1982. Invariant measures for the zero-range processes. Ann. Probab. 10 525 547. · Zbl 0492.60096
[3] BERTINI, L. and ZEGARLINSKI, B. 1996. Coercive inequalities for Kawasaki dynamics: the Z product case. Univ. Texas Math. Physics archive preprint 96-561. See also Coercive. inequalities for Gibbs measures. Univ. Texas Math. Physics archive preprint 96-562. · Zbl 0934.60096
[4] CANCRINI, N. and GALVES, J. A. 1995. Approach to equilibrium in the symmetric simple exclusion process. Markov Process. Related Fields 2 175 184. · Zbl 0901.60075
[5] DAVIES, E. B. 1969. Heat Kernels and Spectral Theory. Cambridge Univ. Press. · Zbl 0699.35006
[6] DEUSCHEL, J. D. 1994. Algebraic L decay of attractive critical processes on the lattice. 2 Ann. Probab. 22 264 283. · Zbl 0811.60089
[7] DIACONIS, P. and SALOFF-COSTE, L. 1993. Comparison principles for reversible Markov chains. Ann. Appl. Probab. 3 696 730. · Zbl 0799.60058
[8] FABES, E. and STROOCK, D. A. 1989. A new proof of Moser’s parabolic Harnack inequality via the old ideas of Nash. Arch. Rational Mech. Anal. 96 327 338. · Zbl 0652.35052
[9] HOFFMANN, J. R. and ROSENTHAL, J. S. 1995. Convergence of independent particle systems. Stochastic Process. Appl. 56 295 305. · Zbl 0816.60066
[10] JENSEN, L. and YAN, H. T. 1996. Hydrodynamic scaling limits of simple exclusion models. Park City IAS Math. Series
[11] KIPNIS, C. and LANDIM, C. 1999. Scaling Limit of Interacting Particle Systems. Springer, New York. · Zbl 0927.60002
[12] LANDIM, C., SETHURAMAN, S. and VARADHAN, S. R. S. 1996. Spectral gap for zero range dynamics. Ann. Probab. 24 1871 1902. · Zbl 0870.60095
[13] LU, S. and YAU, H. T. 1993. Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics. Comm. Math. Phys. 156 399 433. · Zbl 0779.60078
[14] MARTINELLI, F. and OLIVIERI, E. 1994. Approach to equilibrium of Glauber dynamics in the one phase region I and II. Comm. Math. Phys. 161 447 514. · Zbl 0793.60111
[15] LIGGETT, T. M. 1991. L rates of convergence for attractive reversible nearest neighbor 2 particle systems: the critical case. Ann. Probab. 19 935 959. · Zbl 0737.60092
[16] LIGGETT, T. M. 1985. Interacting Particle Systems. Springer, New York. · Zbl 0559.60078
[17] NASH, J. 1958. Continuity of solutions of parabolic and elliptic equations. Amer. J. Math. 80 931 954. JSTOR: · Zbl 0096.06902
[18] JANVRESSE, LANDIM, QUASTEL AND YAU 360
[19] QUASTEL, J. 1992. Diffusion of color in the simple exclusion process. Comm. Pure Appl. Math. 40 623 679. · Zbl 0769.60097
[20] REED, M. and SIMON, B. 1972. Methods of Modern Mathematical Physics 1 4. Academic Press, New York. · Zbl 0459.46001
[21] SPOHN, H. 1991. Large Scale Dynamics of Interacting Particles. Springer, New York. · Zbl 0742.76002
[22] SPOHN, H. and YAU, H. T. 1995. Bulk diffusivity of lattice gases close to criticality. J. Statist. Phys. 79 231 241. · Zbl 1106.82335
[23] STROOCK, D. and ZEGARLINSKI, B. 1992. The equivalence of the logarithmic Sobolev inequality and the Dobrushin Shlosman mixing condition. Comm. Math. Phys. 144 · Zbl 0745.60104
[24] VARADHAN, S. R. S. and YAU, H. T. 1997. Hydrodynamic limit of the Kawasaki dynamics for the Ising model. Asia J. Math. 1 623 678. · Zbl 0947.60089
[25] YAU, H. T. 1996. Logarithmic Sobolev inequality for lattice gases with mixing conditions. Comm. Math. Phys. 181 367 408. · Zbl 0864.60079
[26] TORONTO, ONTARIO 251 MERCER STREET M5S 3G3 CANADA NEW YORK, NEW YORK 10012 E-MAIL: quastel@math.toronto.edu E-MAIL: yau@cims.nyu.edu
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.