# zbMATH — the first resource for mathematics

Short-range potential and a model of operator extension theory for resonators with semitransparent boundary. (English. Russian original) Zbl 0952.35110
Math. Notes 65, No. 5, 590-597 (1999); translation from Mat. Zametki 65, No. 5, 703-711 (1999).
Let $$\Omega ^{\text{in}}$$ be a domain in $$\mathbb{R}^{3}$$ (or $$\mathbb{R}^{2}$$) with a smooth boundary $$\Gamma$$, let $$\Omega ^{\text{ex}}:=\mathbb{R}^{3}\setminus \overline{ \Omega ^{\text{in}}}$$ (or $$\Omega ^{\text{ex}}:=\mathbb{R}^{2}\setminus \overline{\Omega ^{\text{in}}}$$). Let $$\Delta _{0}^{\text{ex}}$$, $$\Delta _{0}^{\text{ex}}$$ denote the Laplace operators in $$\Omega ^{\text{in}}$$, $$\Omega ^{\text{ex}}$$, respectively, defined on the sets of functions vanishing on $$\Gamma$$. The operator $$-\Delta _{0}:=- \overline{( \Delta _{0}^{\text{in}}\oplus \Delta _{0}^{\text{ex}}) }$$ is symmetric and has deficiency indices $$\left( \infty ,\infty \right)$$. There are considered its simplest selfadjoint extensions that are determined by the finite-dimensional constraints between the limit values of both the functions and their normal derivatives on both sides of the boundary. The precise meaning of that is given in Theorem 1. Theorem 2 says that the resolvent R($$\lambda$$) of a fixed extension with an appropriate domain is the limit, as $$\varepsilon \rightarrow 0$$, of the resolvents R$$_{\varepsilon }$$($$\lambda$$) of the disturbances H$$_{\varepsilon }$$ of the Laplace operator with domain H$$^{2}$$, the Sobolev space. The limit is taken in the Banach space of bounded linear operators acting from $$L_{2}$$ into the Sobolev space $$H^{1}$$. All this is interpreted in terms of the propagation of an electronic wave in quantum wave guide as well as in those of the transport properties of two-barrier structures.
##### MSC:
 35Q40 PDEs in connection with quantum mechanics 81V10 Electromagnetic interaction; quantum electrodynamics 81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
Full Text:
##### References:
  S. Albeverio, F. Gesztezy, R. Hoegh-Kron, and H. Holden,Solvable Models in Quantum Mechanics, Springer-Verlag, Berlin (1988).  A. M. Kriman and P. P. Ruden, ”Electron transfer between regions of quasi-two-dimensional and three-dimensional dynamics in semiconductor microstructures,”Phys. Rev. B,32, No. 12, 8013–8020 (1985). · doi:10.1103/PhysRevB.32.8013  I. Yu. Popov and S. L. Popova, ”The extension theory and resonances for a quantum waveguide,”Phys. Lett. A,173, 484–488 (1993). · doi:10.1016/0375-9601(93)90162-S  F. Sols, ”Scattering, dissipation, and transport in mesoscopic systems,”Ann. Physics,214, No. 2, 386–438 (1992). · doi:10.1016/S0003-4916(05)80005-3  B. S. Pavlov, ”The extension theory and explicitly solvable models,”Uspekhi Mat. Nauk [Russian Math. Surveys],42, No. 6, 99–131 (1987). · Zbl 0648.47010  I. Yu. Popov, ”The extension theory and diffraction problems,”Lecture Notes in Phys.,324, 218–229 (1989). · doi:10.1007/BFb0022950  I. Yu. Popov, ”The resonator with narrow slit and the model based on the operator extensions theory,”J. Math. Phys.,33, No. 11, 3794–3801 (1992). · Zbl 0762.35078 · doi:10.1063/1.529877  I. Yu. Popov, ”The extension theory and the opening in semitransparent surface,”J. Math. Phys.,33, No. 5, 1685–1689 (1992). · Zbl 0760.35034 · doi:10.1063/1.529697  J. P. Antoine, F. Gesztesy, and J. Shabani, ”Exactly solvable models of sphere interactions in quantum mechanics,”J. Phys. A,20, 3687–3712 (1987). · doi:10.1088/0305-4470/20/12/022  T. Ikebe and S. Shimada, ”Spectral and scattering theory for the Schrödinger operators with penetrable wall potentials,”J. Math. Kyoto Univ.,31, No. 1, 219–258 (1991). · Zbl 0736.47007  S. Shimada, ”The approximation of the Schrödinger operators with penetrable wall potentials in terms of short range Hamiltonians,”J. Math. Kyoto Univ.,32, No. 3, 583–592 (1992). · Zbl 0776.35044  K. Mochizuki,Scattering Theory for the Wave Equation, Kinokuniya, Tokyo (1984). · Zbl 0583.32012  M. S. Agranovich, ”The spectral properties of diffraction, problems,” in:Supplement to the book by N. N. Voitovich, B. Z. Katsenelenbaum, and A. N. Sivov, ”The Generalized Method of Natural Oscillations in Diffraction Theory [in Russian], Nauka, Moscow (1977).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.