×

Essential self-adjointness of Dirac operators with a variable mass term. (English) Zbl 0952.35113

Summary: We study the essential self-adjointness of Dirac operators with a variable mass term \(m(x)\) and an electric potential \(V(x)\). We are mainly interested in the local singularities of \(m(x)\) and \(V(x)\). We can treat singularities of \(m(x)\) and \(V(x)\) which are stronger than those of Coulomb potentials.

MSC:

35Q40 PDEs in connection with quantum mechanics
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
35P05 General topics in linear spectral theory for PDEs
47A55 Perturbation theory of linear operators
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Arai, M.: On essential selfadjointness, distinguished selfadjoint extension and essential spectrum of Dirac operators with matrix valued potentials. Publ. Res. Inst. Math. Sci., Kyoto Univ., 19 , 33-57 (1983). · Zbl 0518.35071 · doi:10.2977/prims/1195182974
[2] Arnold, V. Kalf, H. and Schneider, A.: Separated Dirac operators and asymptotically constant linear systems. Math. Proc. Camb. Phil. Sco., 121 , 141-146 (1997). · Zbl 0902.34073 · doi:10.1017/S0305004196001284
[3] Behncke, H.: The Dirac Equation with an anomalous magnetic moment. Math. Z., 174 , 213-225 (1980). · Zbl 0424.35076 · doi:10.1007/BF01161410
[4] Kalf, H.: Essential self-adjointness of Dirac operators under an integral condition on the potential. Letters in Math. Phys., 44 , 225-232 (1998). · Zbl 0918.47024 · doi:10.1023/A:1007415716921
[5] Kato, T.: Schrödinger operators with singular potentials. Israel J. Math., 13 , 135-148 (1972). · Zbl 0246.35025 · doi:10.1007/BF02760233
[6] Schmincke, U.-W.: Essential selfadjointness of Dirac operators with a strongly singular potential. Math. Z., 126 , 71-81 (1972). · Zbl 0248.35091 · doi:10.1007/BF01580357
[7] Schmidt, K. M. and Yamada, O.: Spherically symmetric Dirac operators with variable mass and potentials infinite at infinity. Publ. Res. Inst. Math. Sci., Kyoto Univ., 34 , 211-227 (1998). · Zbl 0967.35118 · doi:10.2977/prims/1195144693
[8] Vasconcelos, J.: Dirac particle in a scalar Coulomb field. Revista Brasileira de Fisica, 1 , 441-450 (1971).
[9] Yamada, O.: A remark on the essential self-adjointness of Dirac operators. Proc. Japan Acad., 62A , 327-330 (1986). · Zbl 0636.47038 · doi:10.3792/pjaa.62.327
[10] Yamada, O.: On the spectrum of Dirac operators with the unbounded potential at infinity. Hokkaido Math. J., 26 , 439-449 (1997). · Zbl 0882.35084 · doi:10.14492/hokmj/1351257976
[11] Yosida, K.: Functional Analysis. Springer, Berlin-Heidelberg-New York (1965). · Zbl 0126.11504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.