zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Robust exponential regulation of nonholonomic systems with uncertainties. (English) Zbl 0952.93057
The author considers nonholonomic control systems in chained form with nonlinear disturbance and drift term. A robust control design scheme is presented to solve the global exponential regulation.

MSC:
93C10Nonlinear control systems
93D21Adaptive or robust stabilization
70F25Nonholonomic systems (particle dynamics)
WorldCat.org
Full Text: DOI
References:
[1] Arnold, V. I.: Geometrical methods in the theory of ordinary differential equations. (1987)
[2] Arnold, V. I., & Novikov, S. P. (Eds.). (1994). Dynamical systems VII. Berlin: Springer.
[3] Astolfi, A.: Discontinuous control of nonholonomic systems. Systems and control letters 27, 37-45 (1996) · Zbl 0877.93107
[4] Astolfi, A., & Schaufelberger, W. (1996). State and output feedback stabilization of multiple chained systems with discontinuous control. Proceedings of 35th IEEE Conference on Decision and Control, Kobe (pp. 1443-1447). · Zbl 0901.93058
[5] Bennani, M. K., & Rouchon, P. (1995). Robust stabilization of flat and chained systems. European Control Conference, Rome (pp. 2642-2646).
[6] Bloch, A.; Reyhanoglu, M.; Mcclamroch, N. H.: Control and stabilization of nonholonomic dynamic systems. IEEE transactions on automatic control 37, 1746-1757 (1992) · Zbl 0778.93084
[7] Bloch, A., & Drakunov, S. (1994). Stabilization of a nonholonomic system via sliding modes. Proceedings of 33rd IEEE Conference on Decision and Control, Orlando (pp. 2961-2963).
[8] Brockett, W. (1983). Asymptotic stability and feedback stabilization. In: R. W. Brockett, R. S. Millman, & H. J. Sussmann, Differential geometric control theory (pp. 181-191). · Zbl 0528.93051
[9] Canudas de Wit, C., & Khennouf, H. (1995). Quasi-continuous stabilizing controllers for nonholonomic systems: Design and robustness considerations. Proceedings of the European control conference (ECC’95), Rome.
[10] De Wit, C. Canudas; Sørdalen, O. J.: Exponential stabilization of mobile robots with nonholonomic constraints. IEEE transactions on automatic control 37, 1791-1797 (1992) · Zbl 0778.93077
[11] Canudas de Wit, C., Siciliano, B., & Bastin, G. (Eds.). (1996). Theory of robot control. London: Springer. · Zbl 0854.70001
[12] Colbaugh, R., & Glass, K. (1998). Learning control for nonholonomic mechanical systems. Preprints of nonlinear control systems design symposium (NOLCOS’98), Enschede (pp. 771-776).
[13] Coron, J. -M.: Global asymptotic stabilization for controllable systems without drift. Mathematical control signals systems 5, 295-312 (1992) · Zbl 0760.93067
[14] Coron, J. -M. (1995). Stabilizing time-varying feedback. Preprints of nonlinear control systems design symposium (NOLCOS’95), Tahoe City, CA (pp. 176-183).
[15] D’andréa-Novel, B.; Campion, G.; Bastin, G.: Control of wheeled mobile robots not satisfying ideal velocity constraints: A singular perturbation approach. International journal of robust and nonlinear control 5, 243-267 (1995) · Zbl 0837.93046
[16] Fliess, M.; Levine, J.; Martin, P.; Rouchon, P.: Flatness and defect of non-linear systems: introductory theory and examples. International journal of control 61, 1327-1361 (1995) · Zbl 0838.93022
[17] Hespanha, J. P., Liberzon, S., & Morse, A. S. (1998). Towards the supervisory control of uncertain nonholonomic systems. Preprint.
[18] Jiang, Y. A., Clements, D. J., & Hesketh, T. (1998). Exponential stabilization of uncertain nonlinear systems in chained form. Preprint.
[19] Jiang, Z. P.: Iterative design of time-varying stabilizers for multi-input systems in chained form. Systems and control letters 28, 255-262 (1996) · Zbl 0866.93084
[20] Jiang, Z. P. (1999). Lyapunov design of global state and output feedback trackers for nonholonomic control systems. Int. J. Control (accepted for publication).
[21] Jiang, Z. P.; Nijmeijer, H.: Tracking control of mobile robots: A case study in backstepping. Automatica 33, 1393-1399 (1997) · Zbl 0882.93057
[22] Jiang, Z. P., & Nijmeijer, H. (1999). A recursive technique for tracking control of nonholonomic systems in chained form, IEEE Transactions on Automatic Control, 44(2), 265-279; also in: Proceedings of European control conference, 1-4 July 1997, Brussels. · Zbl 0978.93046
[23] Jiang, Z. P., & Pomet, J. -B. (1994). Combining backstepping and time-varying techniques for a new set of adaptive controllers. Proceedings of 33rd IEEE Conference on Decision and Control, Florida (pp. 2207-2212), also in: International Journal of Adaptive Control and Signal Processing, 10, 47-59, 1996.
[24] Khalil, H. K. (1996). Nonlinear systems (2nd ed.), Upper Saddle River, NJ: Prentice-Hall. · Zbl 0842.93033
[25] Kolmanovsky, I.; Mcclamroch, N. H.: Developments in nonholonomic control problems. IEEE control systems magazine 15, No. 6, 20-36 (1995)
[26] Kolmanovsky, I.; Mcclamroch, N. H.: Hybrid feedback laws for a class of cascaded nonlinear control systems. IEEE transactions on automatic control 41, 1271-1282 (1996) · Zbl 0862.93048
[27] Kokotović, P. V.: The joy of feedback: nonlinear and adaptive. IEEE control systems magazine 12, 7-17 (1992)
[28] Krstić, M.; Kanellakopoulos, I.; Kokotović, P. V.: Nonlinear and adaptive control design. (1995) · Zbl 0763.93043
[29] Laiou, M. C., & Astolfi, A. (1998). Exponential stabilization of high-order chained systems, Preprints of fourth IFAC nonlinear control systems design symposium (NOLCOS’98), Enschede (pp. 649-654).
[30] Luo, J.; Tsiotras, P.: Exponentially convergent control laws for nonholonomic systems in power form. Systems and control letters 35, 87-95 (1998) · Zbl 0909.93029
[31] Marino, R.; Tomei, P.: Nonlinear control design: geometric, adaptive and robust. (1995) · Zbl 0833.93003
[32] M’closkey, R.; Murray, R.: Exponential stabilization of driftless nonlinear control systems using homogeneous feedback. IEEE transactions on automatic control 42, 614-628 (1997) · Zbl 0882.93066
[33] Morin, P., Pomet, J. -B., & Samson, C. (1998). Developments in time-varying feedback stabilization of nonlinear systems, Preprints of Nonlinear control systems design symposium (NOLCOS’98), Enschede (pp. 587-594).
[34] Murray, R. M.; Sastry, S.: Nonholonomic motion planning: steering using sinusoids. IEEE transactions on automatic control 38, 700-716 (1993) · Zbl 0800.93840
[35] Neı\breve{}mark, Ju. I., & Fufaev, N. A. (1972). Dynamics of nonholonomic systems. Translations of mathematical monographs, vol. 33. Providence, RI: American Mathematical Society.
[36] Pettersen, K.Y. (1996). Exponential stabilization of underactuated vehicles. Ph.D. thesis, Norwegian University of Science and Technology.
[37] Pomet, J. -B.: Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift. Systems and control letters 18, 147-158 (1992) · Zbl 0744.93084
[38] Pomet, J. -B., Samson, C. (1993). Time-varying exponential stabilization of nonholonomic systems in power form. Tech. Rep. 2126, INRIA.
[39] Praly, L.; Jiang, Z. P.: Stabilization by output feedback for systems with ISS inverse dynamics. Systems and control letters 21, 19-33 (1993) · Zbl 0784.93088
[40] Reyhanoglu, M.: Exponential stabilization of an underactuated autonomous surface vessel. Automatica 33, No. 12, 2249-2254 (1997) · Zbl 0949.93067
[41] Reyhanoglu, M., Cho, S., McClamroch, N. H., & Kolmanovsky, I. (1998). Discontinuous feedback control of a planar rigid body with an underactuated degree of freedom. Proceedings of 37th IEEE Conference on Decision and Control, Tampa, FL (pp. 433-438).
[42] Rui, C., Reyhanoglu, M., Kolmanovsky, I., Cho, S., & McClamroch, N. H. (1997). Nonsmooth stabilization of an underactuated unstable two degrees of freedom mechanical system. Proceedings of 36th IEEE Conference on Decision and control, San Diego, CA (pp. 3998-4003).
[43] Sørdalen, O. J.; Egeland, O.: Exponential stabilization of nonholonomic chained systems. IEEE transactions on automatic control 40, 35-49 (1995) · Zbl 0828.93055
[44] Tilbury, D.; Murray, R. M.; Sastry, S.: Trajectory generation for the N-trailer problem using Goursat normal form. IEEE transactions on automatic control 40, 802-819 (1995) · Zbl 0826.93046