×

Robust exponential regulation of nonholonomic systems with uncertainties. (English) Zbl 0952.93057

The author considers nonholonomic control systems in chained form with nonlinear disturbance and drift term. A robust control design scheme is presented to solve the global exponential regulation.

MSC:

93C10 Nonlinear systems in control theory
93D21 Adaptive or robust stabilization
70F25 Nonholonomic systems related to the dynamics of a system of particles
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Arnold, V. I., Geometrical methods in the theory of ordinary differential equations (1987), Springer: Springer Berlin
[2] Arnold, V. I., & Novikov, S. P. (Eds.). (1994). Dynamical systems VII. Berlin: Springer.; Arnold, V. I., & Novikov, S. P. (Eds.). (1994). Dynamical systems VII. Berlin: Springer. · Zbl 0795.00013
[3] Astolfi, A., Discontinuous control of nonholonomic systems, Systems and Control Letters, 27, 37-45 (1996) · Zbl 0877.93107
[4] Astolfi, A., & Schaufelberger, W. (1996). State and output feedback stabilization of multiple chained systems with discontinuous control. Proceedings of 35th IEEE Conference on Decision and Control, Kobe (pp. 1443-1447).; Astolfi, A., & Schaufelberger, W. (1996). State and output feedback stabilization of multiple chained systems with discontinuous control. Proceedings of 35th IEEE Conference on Decision and Control, Kobe (pp. 1443-1447). · Zbl 0901.93058
[5] Bennani, M. K., & Rouchon, P. (1995). Robust stabilization of flat and chained systems. European Control Conference, Rome (pp. 2642-2646).; Bennani, M. K., & Rouchon, P. (1995). Robust stabilization of flat and chained systems. European Control Conference, Rome (pp. 2642-2646).
[6] Bloch, A.; Reyhanoglu, M.; McClamroch, N. H., Control and stabilization of nonholonomic dynamic systems, IEEE Transactions on Automatic Control, 37, 1746-1757 (1992) · Zbl 0778.93084
[7] Bloch, A., & Drakunov, S. (1994). Stabilization of a nonholonomic system via sliding modes. Proceedings of 33rd IEEE Conference on Decision and Control, Orlando (pp. 2961-2963).; Bloch, A., & Drakunov, S. (1994). Stabilization of a nonholonomic system via sliding modes. Proceedings of 33rd IEEE Conference on Decision and Control, Orlando (pp. 2961-2963).
[8] Brockett, W. (1983). Asymptotic stability and feedback stabilization. In: R. W. Brockett, R. S. Millman, & H. J. Sussmann, Differential geometric control theory (pp. 181-191).; Brockett, W. (1983). Asymptotic stability and feedback stabilization. In: R. W. Brockett, R. S. Millman, & H. J. Sussmann, Differential geometric control theory (pp. 181-191). · Zbl 0528.93051
[9] Canudas de Wit, C., & Khennouf, H. (1995). Quasi-continuous stabilizing controllers for nonholonomic systems: Design and robustness considerations. Proceedings of the European control conference (ECC95), Rome.; Canudas de Wit, C., & Khennouf, H. (1995). Quasi-continuous stabilizing controllers for nonholonomic systems: Design and robustness considerations. Proceedings of the European control conference (ECC95), Rome.
[10] Canudas de Wit, C.; Sørdalen, O. J., Exponential stabilization of mobile robots with nonholonomic constraints, IEEE Transactions on Automatic Control, 37, 1791-1797 (1992) · Zbl 0778.93077
[11] Canudas de Wit, C., Siciliano, B., & Bastin, G. (Eds.). (1996). Theory of robot control. London: Springer.; Canudas de Wit, C., Siciliano, B., & Bastin, G. (Eds.). (1996). Theory of robot control. London: Springer. · Zbl 0854.70001
[12] Colbaugh, R., & Glass, K. (1998). Learning control for nonholonomic mechanical systems. Preprints of nonlinear control systems design symposium (NOLCOS98), Enschede (pp. 771-776).; Colbaugh, R., & Glass, K. (1998). Learning control for nonholonomic mechanical systems. Preprints of nonlinear control systems design symposium (NOLCOS98), Enschede (pp. 771-776).
[13] Coron, J.-M., Global asymptotic stabilization for controllable systems without drift, Mathematical Control Signals Systems, 5, 295-312 (1992) · Zbl 0760.93067
[14] Coron, J. -M. (1995). Stabilizing time-varying feedback. Preprints of nonlinear control systems design symposium (NOLCOS95), Tahoe City, CA (pp. 176-183).; Coron, J. -M. (1995). Stabilizing time-varying feedback. Preprints of nonlinear control systems design symposium (NOLCOS95), Tahoe City, CA (pp. 176-183).
[15] d’Andréa-Novel, B.; Campion, G.; Bastin, G., Control of wheeled mobile robots not satisfying ideal velocity constraints: A singular perturbation approach, International Journal of Robust and Nonlinear Control, 5, 243-267 (1995) · Zbl 0837.93046
[16] Fliess, M.; Levine, J.; Martin, P.; Rouchon, P., Flatness and defect of non-linear systems: introductory theory and examples, International Journal of Control, 61, 1327-1361 (1995) · Zbl 0838.93022
[17] Hespanha, J. P., Liberzon, S., & Morse, A. S. (1998). Towards the supervisory control of uncertain nonholonomic systems. Preprint.; Hespanha, J. P., Liberzon, S., & Morse, A. S. (1998). Towards the supervisory control of uncertain nonholonomic systems. Preprint. · Zbl 1011.93500
[18] Jiang, Y. A., Clements, D. J., & Hesketh, T. (1998). Exponential stabilization of uncertain nonlinear systems in chained form. Preprint.; Jiang, Y. A., Clements, D. J., & Hesketh, T. (1998). Exponential stabilization of uncertain nonlinear systems in chained form. Preprint.
[19] Jiang, Z. P., Iterative design of time-varying stabilizers for multi-input systems in chained form, Systems and Control Letters, 28, 255-262 (1996) · Zbl 0866.93084
[20] Jiang, Z. P. (1999). Lyapunov design of global state and output feedback trackers for nonholonomic control systems. Int. J. Control (accepted for publication).; Jiang, Z. P. (1999). Lyapunov design of global state and output feedback trackers for nonholonomic control systems. Int. J. Control (accepted for publication).
[21] Jiang, Z. P.; Nijmeijer, H., Tracking control of mobile robots: A case study in backstepping, Automatica, 33, 1393-1399 (1997) · Zbl 0882.93057
[22] Jiang, Z. P., & Nijmeijer, H. (1999). A recursive technique for tracking control of nonholonomic systems in chained form, IEEE Transactions on Automatic Control, 44(2), 265-279; also in: Proceedings of European control conference, 1-4 July 1997, Brussels.; Jiang, Z. P., & Nijmeijer, H. (1999). A recursive technique for tracking control of nonholonomic systems in chained form, IEEE Transactions on Automatic Control, 44(2), 265-279; also in: Proceedings of European control conference, 1-4 July 1997, Brussels. · Zbl 0978.93046
[23] Jiang, Z. P., & Pomet, J. -B. (1994). Combining backstepping and time-varying techniques for a new set of adaptive controllers. Proceedings of 33rd IEEE Conference on Decision and Control, Florida (pp. 2207-2212), also in: International Journal of Adaptive Control and Signal Processing, 10, 47-59, 1996.; Jiang, Z. P., & Pomet, J. -B. (1994). Combining backstepping and time-varying techniques for a new set of adaptive controllers. Proceedings of 33rd IEEE Conference on Decision and Control, Florida (pp. 2207-2212), also in: International Journal of Adaptive Control and Signal Processing, 10, 47-59, 1996. · Zbl 0866.93093
[24] Khalil, H. K. (1996). Nonlinear systems (2nd ed.), Upper Saddle River, NJ: Prentice-Hall.; Khalil, H. K. (1996). Nonlinear systems (2nd ed.), Upper Saddle River, NJ: Prentice-Hall.
[25] Kolmanovsky, I.; McClamroch, N. H., Developments in nonholonomic control problems, IEEE Control Systems Magazine, 15, 6, 20-36 (1995)
[26] Kolmanovsky, I.; McClamroch, N. H., Hybrid feedback laws for a class of cascaded nonlinear control systems, IEEE Transactions on Automatic Control, 41, 1271-1282 (1996) · Zbl 0862.93048
[27] Kokotović, P. V., The joy of feedback: Nonlinear and adaptive, IEEE Control Systems Magazine, 12, 7-17 (1992)
[28] Krstić, M.; Kanellakopoulos, I.; Kokotović, P. V., Nonlinear and adaptive control design (1995), Wiley: Wiley New York · Zbl 0763.93043
[29] Laiou, M. C., & Astolfi, A. (1998). Exponential stabilization of high-order chained systems, Preprints of fourth IFAC nonlinear control systems design symposium (NOLCOS’98), Enschede (pp. 649-654).; Laiou, M. C., & Astolfi, A. (1998). Exponential stabilization of high-order chained systems, Preprints of fourth IFAC nonlinear control systems design symposium (NOLCOS’98), Enschede (pp. 649-654).
[30] Luo, J.; Tsiotras, P., Exponentially convergent control laws for nonholonomic systems in power form, Systems and Control Letters, 35, 87-95 (1998) · Zbl 0909.93029
[31] Marino, R.; Tomei, P., Nonlinear control design: Geometric, adaptive and robust (1995), Prentice Hall: Prentice Hall London · Zbl 0833.93003
[32] M’Closkey, R.; Murray, R., Exponential stabilization of driftless nonlinear control systems using homogeneous feedback, IEEE Transactions on Automatic Control, 42, 614-628 (1997) · Zbl 0882.93066
[33] Morin, P., Pomet, J. -B., & Samson, C. (1998). Developments in time-varying feedback stabilization of nonlinear systems, Preprints of Nonlinear control systems design symposium (NOLCOS98), Enschede (pp. 587-594).; Morin, P., Pomet, J. -B., & Samson, C. (1998). Developments in time-varying feedback stabilization of nonlinear systems, Preprints of Nonlinear control systems design symposium (NOLCOS98), Enschede (pp. 587-594).
[34] Murray, R. M.; Sastry, S., Nonholonomic motion planning: Steering using sinusoids, IEEE Transactions on Automatic Control, 38, 700-716 (1993) · Zbl 0800.93840
[35] Neı̆mark, Ju. I., & Fufaev, N. A. (1972). Dynamics of nonholonomic systems. Translations of mathematical monographs, vol. 33. Providence, RI: American Mathematical Society.; Neı̆mark, Ju. I., & Fufaev, N. A. (1972). Dynamics of nonholonomic systems. Translations of mathematical monographs, vol. 33. Providence, RI: American Mathematical Society. · Zbl 0245.70011
[36] Pettersen, K.Y. (1996). Exponential stabilization of underactuated vehicles. Ph.D. thesis, Norwegian University of Science and Technology.; Pettersen, K.Y. (1996). Exponential stabilization of underactuated vehicles. Ph.D. thesis, Norwegian University of Science and Technology.
[37] Pomet, J.-B., Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift, Systems and Control Letters, 18, 147-158 (1992) · Zbl 0744.93084
[38] Pomet, J. -B., Samson, C. (1993). Time-varying exponential stabilization of nonholonomic systems in power form. Tech. Rep. 2126, INRIA.; Pomet, J. -B., Samson, C. (1993). Time-varying exponential stabilization of nonholonomic systems in power form. Tech. Rep. 2126, INRIA.
[39] Praly, L.; Jiang, Z. P., Stabilization by output feedback for systems with ISS inverse dynamics, Systems and Control Letters, 21, 19-33 (1993) · Zbl 0784.93088
[40] Reyhanoglu, M., Exponential stabilization of an underactuated autonomous surface vessel, Automatica, 33, 12, 2249-2254 (1997) · Zbl 0949.93067
[41] Reyhanoglu, M., Cho, S., McClamroch, N. H., & Kolmanovsky, I. (1998). Discontinuous feedback control of a planar rigid body with an underactuated degree of freedom. Proceedings of 37th IEEE Conference on Decision and Control, Tampa, FL (pp. 433-438).; Reyhanoglu, M., Cho, S., McClamroch, N. H., & Kolmanovsky, I. (1998). Discontinuous feedback control of a planar rigid body with an underactuated degree of freedom. Proceedings of 37th IEEE Conference on Decision and Control, Tampa, FL (pp. 433-438).
[42] Rui, C., Reyhanoglu, M., Kolmanovsky, I., Cho, S., & McClamroch, N. H. (1997). Nonsmooth stabilization of an underactuated unstable two degrees of freedom mechanical system. Proceedings of 36th IEEE Conference on Decision and control, San Diego, CA (pp. 3998-4003).; Rui, C., Reyhanoglu, M., Kolmanovsky, I., Cho, S., & McClamroch, N. H. (1997). Nonsmooth stabilization of an underactuated unstable two degrees of freedom mechanical system. Proceedings of 36th IEEE Conference on Decision and control, San Diego, CA (pp. 3998-4003).
[43] Sørdalen, O. J.; Egeland, O., Exponential stabilization of nonholonomic chained systems, IEEE Transactions on Automatic Control, 40, 35-49 (1995) · Zbl 0828.93055
[44] Tilbury, D.; Murray, R. M.; Sastry, S., Trajectory generation for the \(N\)-trailer problem using Goursat normal form, IEEE Transactions on Automatic Control, 40, 802-819 (1995) · Zbl 0826.93046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.