zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Static output feedback controllers: Stability and convexity. (English) Zbl 0952.93106
Summary: The main objective of this paper is to solve the following stabilizing output feedback control problem: Given matrices $(A,B_2,C_2)$ with appropriate dimensions, find (if one exists) a static output feedback gain $L$ such that the closed-loop matrix $A-B_2LC_2$ is asymptotically stable. It is known that the existence of $L$ is equivalent to the existence of a positive definite matrix belonging to a convex set such that its inverse belongs to another convex set. Conditions are provided for the convergence of an algorithm which decomposes the determination of the aforementioned matrix in a sequence of convex programs. Hence, this paper provides a new sufficient (but not necessary) condition for the solvability of the above stabilizing output feedback control problem. As a natural extension, we also discuss a simple procedure for the determination of a stabilizing output feedback gain assuring good suboptimal performance with respect to a given quadratic index. Some examples borrowed from the literature are solved to illustrate the theoretical results.

93D15Stabilization of systems by feedback
93B40Computational methods in systems theory
93B52Feedback control
90C25Convex programming
Full Text: DOI