×

zbMATH — the first resource for mathematics

Intertwining operator algebras and vertex tensor categories for affine Lie algebras. (English) Zbl 0953.17016
The authors prove the associativity of intertwining operators for the vertex operator algebras associated to affine Lie algebras at positive level. This can be viewed as an application of the authors’ earlier series of works on the general tensor product theory for representations of vertex operator algebras. In particular, they obtain the braided tensor category structures on the category generated by the standard modules of affine Lie algebras at positive integral level.

MSC:
17B69 Vertex operators; vertex operator algebras and related structures
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] A. Beilinson, B. Feigin, and B. Mazur, Introduction to algebraic field theory on curves , preprint, (provided by A. Beilinson, 1996), 1991.
[2] A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory , Nuclear Phys. B 241 (1984), no. 2, 333-380. · Zbl 0661.17013
[3] Richard E. Borcherds, Vertex algebras, Kac-Moody algebras, and the Monster , Proc. Nat. Acad. Sci. U.S.A. 83 (1986), no. 10, 3068-3071. JSTOR: · Zbl 0613.17012
[4] P. Deligne, Une description de catégorie tressée (inspiré par Drinfeld) , unpublished. · Zbl 0349.14010
[5] Chongying Dong and James Lepowsky, Generalized vertex algebras and relative vertex operators , Progress in Mathematics, vol. 112, Birkhäuser Boston Inc., Boston, MA, 1993. · Zbl 0803.17009
[6] Chongying Dong, Haisheng Li, and Geoffrey Mason, Regularity of rational vertex operator algebras , Adv. Math. 132 (1997), no. 1, 148-166. · Zbl 0902.17014
[7] Chongying Dong and Geoffrey Mason, On quantum Galois theory , Duke Math. J. 86 (1997), no. 2, 305-321. · Zbl 0890.17031
[8] Chongying Dong, Geoffrey Mason, and Yongchang Zhu, Discrete series of the Virasoro algebra and the moonshine module , Algebraic groups and their generalizations: quantum and infinite-dimensional methods (University Park, PA, 1991), Proc. Sympos. Pure Math., vol. 56, Amer. Math. Soc., Providence, RI, 1994, pp. 295-316. · Zbl 0813.17019
[9] V. G. Drinfeld, On quasitriangular quasi-Hopf algebras and on a group that is closely connected with \(\mathrm Gal(\overline\mathbf Q/\mathbf Q)\) , Algebra i Analiz 2 (1990), no. 4, 149-181, (in Russian); English transl. in Leningrad Math. J. 2 (1991), 829-860. · Zbl 0728.16021
[10] M. Finkelberg, Fusion categories , Ph.D. thesis, Harvard University, 1993. · Zbl 0860.17040
[11] M. Finkelberg, An equivalence of fusion categories , Geom. Funct. Anal. 6 (1996), no. 2, 249-267. · Zbl 0860.17040
[12] I. B. Frenkel, Y.-Z. Huang, and J. Lepowsky, On axiomatic approaches to vertex operator algebras and modules , Mem. Amer. Math. Soc. 104, Amer. Math. Soc., Providence, 1993 no. 494 (preprint, 1989). · Zbl 0789.17022
[13] Igor Frenkel, James Lepowsky, and Arne Meurman, Vertex operator algebras and the Monster , Pure and Applied Mathematics, vol. 134, Academic Press Inc., Boston, MA, 1988. · Zbl 0674.17001
[14] Igor B. Frenkel and Yongchang Zhu, Vertex operator algebras associated to representations of affine and Virasoro algebras , Duke Math. J. 66 (1992), no. 1, 123-168. · Zbl 0848.17032
[15] Yi-Zhi Huang, A theory of tensor products for module categories for a vertex operator algebra. IV , J. Pure Appl. Algebra 100 (1995), no. 1-3, 173-216. · Zbl 0841.17015
[16] Yi-Zhi Huang, Virasoro vertex operator algebras, the (nonmeromorphic) operator product expansion and the tensor product theory , J. Algebra 182 (1996), no. 1, 201-234. · Zbl 0862.17022
[17] Yi-Zhi Huang, Intertwining operator algebras, genus-zero modular functors and genus-zero conformal field theories , Operads: Proceedings of Renaissance Conferences (Hartford, CT/Luminy, 1995), Contemp. Math., vol. 202, Amer. Math. Soc., Providence, RI, 1997, pp. 335-355. · Zbl 0871.17022
[18] Yi-Zhi Huang, Two-dimensional conformal geometry and vertex operator algebras , Progress in Mathematics, vol. 148, Birkhäuser Boston Inc., Boston, MA, 1997. · Zbl 0884.17021
[19] Yi-Zhi Huang, Genus-zero modular functors and intertwining operator algebras , Internat. J. Math. 9 (1998), no. 7, 845-863. · Zbl 0918.17022
[20] Y.-Z. Huang, Generalized rationality and a generalized Jacobi identity for intertwining operator algebras , to appear in Selecta Math. (N.S.). · Zbl 1013.17026
[21] Yi-Zhi Huang and James Lepowsky, Toward a theory of tensor products for representations of a vertex operator algebra , Proceedings of the XXth International Conference on Differential Geometric Methods in Theoretical Physics, Vol. 1, 2 (New York, 1991), World Sci. Publishing, River Edge, NJ, 1992, pp. 344-354. · Zbl 0829.17025
[22] Yi-Zhi Huang and James Lepowsky, Tensor products of modules for a vertex operator algebra and vertex tensor categories , Lie theory and geometry, Progr. Math., vol. 123, Birkhäuser Boston, Boston, MA, 1994, pp. 349-383. · Zbl 0848.17031
[23] Y.-Z. Huang and J. Lepowsky, A theory of tensor products for module categories for a vertex operator algebra. I , Selecta Math. (N.S.) 1 (1995), no. 4, 699-756. · Zbl 0854.17032
[24] Y.-Z. Huang and J. Lepowsky, A theory of tensor products for module categories for a vertex operator algebra. II , Selecta Math. (N.S.) 1 (1995), no. 4, 757-786. · Zbl 0854.17033
[25] Yi-Zhi Huang and James Lepowsky, A theory of tensor products for module categories for a vertex operator algebra. III , J. Pure Appl. Algebra 100 (1995), no. 1-3, 141-171. · Zbl 0841.17014
[26] Y.-Z. Huang and J. Lepowsky, A theory of tensor products for module categories for a vertex operator algebra, V , · Zbl 0854.17033
[27] A. Joyal and R. Street, Braided monoidal categories , preprint, Macquarie University, Sydney, Australia, 1986. · Zbl 0833.18004
[28] David Kazhdan and George Lusztig, Affine Lie algebras and quantum groups , Internat. Math. Res. Notices (1991), no. 2, 21-29. · Zbl 0726.17015
[29] D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras. I , J. Amer. Math. Soc. 6 (1993), no. 4, 905-947. JSTOR: · Zbl 0786.17017
[30] D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras.II , J. Amer. Math. Soc. 6 (1993), no. 4, 949-1011. JSTOR: · Zbl 0786.17017
[31] D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras. III , J. Amer. Math. Soc. 7 (1994), no. 2, 335-381. JSTOR: · Zbl 0802.17007
[32] D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras. IV , J. Amer. Math. Soc. 7 (1994), no. 2, 383-453. JSTOR: · Zbl 0802.17008
[33] Anthony W. Knapp, Representation theory of semisimple groups , Princeton Mathematical Series, vol. 36, Princeton University Press, Princeton, NJ, 1986, An Overview Based on Examples. · Zbl 0604.22001
[34] V. G. Knizhnik and A. B. Zamolodchikov, Current algebra and Wess-Zumino model in two dimensions , Nuclear Phys. B 247 (1984), no. 1, 83-103. · Zbl 0661.17020
[35] H. Li, Representation theory and the tensor product theory for vertex operator algebras , Ph.D. thesis, Rutgers University, 1994.
[36] Hai-Sheng Li, Local systems of vertex operators, vertex superalgebras and modules , J. Pure Appl. Algebra 109 (1996), no. 2, 143-195. · Zbl 0854.17035
[37] Haisheng Li, An analogue of the Hom functor and a generalized nuclear democracy theorem , Duke Math. J. 93 (1998), no. 1, 73-114. · Zbl 0956.17017
[38] Gregory Moore and Nathan Seiberg, Classical and quantum conformal field theory , Comm. Math. Phys. 123 (1989), no. 2, 177-254. · Zbl 0694.53074
[39] G. B. Segal, The definition of conformal field theory , preprint, 1988. · Zbl 0657.53060
[40] Graeme Segal, Two-dimensional conformal field theories and modular functors , IXth International Congress on Mathematical Physics (Swansea, 1988), Hilger, Bristol, 1989, pp. 22-37.
[41] 1 Akihiro Tsuchiya and Yukihiro Kanie, Vertex operators in conformal field theory on \(\mathbf P^ 1\) and monodromy representations of braid group , Conformal field theory and solvable lattice models (Kyoto, 1986), Adv. Stud. Pure Math., vol. 16, Academic Press, Boston, MA, 1988, pp. 297-372. · Zbl 0661.17021
[42] 2 A. Tsuchiya and Y. Kanie, Errata to: “Vertex operators in conformal field theory on \(\mathbf P^ 1\) and monodromy representations of braid group” , Integrable systems in quantum field theory and statistical mechanics, Adv. Stud. Pure Math., vol. 19, Academic Press, Boston, MA, 1989, pp. 675-682. · Zbl 0699.17019
[43] Akihiro Tsuchiya, Kenji Ueno, and Yasuhiko Yamada, Conformal field theory on universal family of stable curves with gauge symmetries , Integrable systems in quantum field theory and statistical mechanics, Adv. Stud. Pure Math., vol. 19, Academic Press, Boston, MA, 1989, pp. 459-566. · Zbl 0696.17010
[44] A. Varchenko, Multidimensional hypergeometric functions and representation theory of Lie algebras and quantum groups , Advanced Series in Mathematical Physics, vol. 21, World Scientific Publishing Co. Inc., River Edge, NJ, 1995. · Zbl 0951.33001
[45] Erik Verlinde, Fusion rules and modular transformations in \(2\)D conformal field theory , Nuclear Phys. B 300 (1988), no. 3, 360-376. · Zbl 1180.81120
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.