×

zbMATH — the first resource for mathematics

On the extension of \(D\)-poset valued measures. (English) Zbl 0953.28015
Summary: A variant of Alexandrov’s theorem is proved stating that a compact, subadditive \(D\)-poset valued mapping is continuous. Then the measure extension theorem is proved for MV-algebra valued measures.
MSC:
28E10 Fuzzy measure theory
06D35 MV-algebras
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Birkhoff, G.: Lattice theory. Providence (1967). · Zbl 0153.02501
[2] Chang, C. C.: Algebraic analysis of many valued logics. Trans. Amer. Math. Soc. 88 (1958), 467-490. · Zbl 0084.00704
[3] Chovanec, F.: States and observables on MV algebras. Tatra Mountains Math. Publ. 3 (1993), 55-63. · Zbl 0799.03074
[4] Chovanec, F., Jurečková, M.: Law of large numbers on \(D\)-posets of fuzzy sets. Tatra Mountains Math. Publ. 1 (1992), 15-18. · Zbl 0795.03095
[5] Chovanec, F., Kôpka, F.: On a representation of observables in \(D\)-posets of fuzzy sets. Tatra Mountains Math. Publ. 1 (1992), 19-24. · Zbl 0795.03096
[6] Dvurečenskij, A., Pulmannová, S.: Difference posets, effects and quantum measurements. Int. J. Theor. Phys. 33 (1994), 819-850. · Zbl 0806.03040
[7] Dvurečenskij, A., Riečan, B.: Decomposition of measures on orthoalgebras and difference posets. Int. J. Theor. Phys. 33 (1994), 1403-1418. · Zbl 0815.03038
[8] Foulis, D. J., Greechie, R. J., Rüttimann, G. T.: Filters and supports in orthoalgebras. Int. J. Theor. Physics 31 (1992), 789-807. · Zbl 0764.03026
[9] Giuntini, R., Greling, H.: Toward a formal language for unsharp properties. Foundations of Physics 20 (1989), 931-945.
[10] Jakubík, J.: On complete MV-algebras. Czechoslovak Math. J. 45 (1995), 473-480. · Zbl 0841.06010
[11] Jurečková, M.: The measure extension theorem on MV \(\sigma \)-algebras. Tatra Mountains Math. Publ. 6 (1995), 55-61. · Zbl 0859.28009
[12] Kôpka, F., Chovanec, F.: \(D\)-posets. Math. Slovaca 44 (1994), 21-34. · Zbl 0789.03048
[13] Mesiar, R.: Fuzzy difference posets and MV-algebras. Proc. IPMU 94, Paris 1994, B. Bouchon-Meunier and R. R. Jager (eds.), 1994, 208-212.
[14] Mundici, D.: Interpretation of \(AFC^\ast \)-algebras in Łukasiewicz sentential calculus. J. Funct. Anal. 65 (1986), 15-63. · Zbl 0597.46059
[15] Riečan, B.: On the lattice group valued measures. Čas. pěst. mat. 101 (1976), 343-349.
[16] Riečan, B.: On measures and integrals with values in ordered groups. Math. Slovaca 33 (1983), 153-163.
[17] Riečan, B.: On the convergence of observables in \(D\)-posets. Tatra Mountains Math. Publ. 12 (1997), 7-12. · Zbl 0965.81004
[18] Volauf, P.: On various notions of regularity in ordered spaces. Math. Slovaca 35 (1985), 127-130. · Zbl 0597.28017
[19] Volauf, P.: Alexandroff and Kolmogorov consistency theorem for measures with values in partially ordered groups. Tatra Mountains Math. Publ. 3 (1993), 237-244. · Zbl 0820.28006
[20] Vonkomerová, M., Vrábelová, M.: On the extension of positive continuous operators. Math. Slovaca 31 (1981), 251-262.
[21] Wright, J. D. M.: The measure extension problem for vector lattices. Ann. Inst. Fourier Grenoble 21 (1971), 65-85. · Zbl 0215.48101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.