zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Eigenvalue problems for nonlinear differential equations on a measure chain. (English) Zbl 0953.34068
Summary: Values of $\lambda$ are determined for which there exist positive solutions to the second-order differential equation on a measure chain, $$u^{\Delta\Delta}(t)+\lambda a(t) f(u(\sigma(t)))= 0,\quad t\in [0,1],$$ satisfying either the conjugate boundary conditions $u(0)= u(\sigma(1))= 0$ or the right focal boundary conditions $u(0)= u^\Delta(\sigma(1))= 0$, where $a$ and $f$ are positive valued, and both $\lim_{x\to 0^+} {f(x)\over x}$ and $\lim_{x\to \infty}{f(x)\over x}$ exist.

MSC:
34L05General spectral theory for OD operators
34B24Sturm-Liouville theory
34B15Nonlinear boundary value problems for ODE
WorldCat.org
Full Text: DOI
References:
[1] R. P. Agarwal, and, M. Bohner, Basic calculus on time scales and some of its applications, preprint. · Zbl 0927.39003
[2] Aulback, B.; Hilger, S.: Linear dynamic processes with inhomogeneous time scale. Math. res. 59 (1990) · Zbl 0719.34088
[3] Deimling, K.: Nonlinear functional analysis. (1985) · Zbl 0559.47040
[4] Eloe, P. W.; Henderson, J.: Positive solutions and nonlinear (k,n-k) conjugate eigenvalue problems. Differential equations dynam. Systems 6, 309-317 (1998) · Zbl 1003.34018
[5] Erbe, L. H.; Hilger, S.: Sturmian theory on measure chains. Differential equations dynam. Systems 1, 223-246 (1993) · Zbl 0868.39007
[6] Erbe, L. H.; Peterson, A.: Green’s functions and comparison theorems for differential equations on measure chains. Dynam. contin., discrete impuls. Systems 6, 121-137 (1999) · Zbl 0938.34027
[7] L. H. Erbe, and, A. Peterson, Positive solutions for a nonlinear differential equation on a measure chain, preprint. · Zbl 0963.34020
[8] Hilger, S.: Analysis on measure chains--A unified approach to continuous and discrete calculus. Results math. 18, 18-56 (1990) · Zbl 0722.39001
[9] Henderson, J.; Wang, H.: Positive solutions for nonlinear eigenvalue problems. J. math. Anal. appl. 208, 252-259 (1997) · Zbl 0876.34023
[10] Kaymakcalan, B.; Lakshmikantham, V.; Sivasundaram, S.: Dynamical systems on measure chains. (1996) · Zbl 0869.34039
[11] Krasnosel’skii, M. A.: Positive solutions of operator equations. (1964)
[12] S. Lauer, Positive Solutions of Boundary Value Problems for Nonlinear Difference Equations, Ph.D. dissertation, Auburn University, 1997. · Zbl 0883.39003