Asymptotics of the scattering coefficients for a generalized Schrödinger equation. (English) Zbl 0953.34071

In this article, the asymptotics of the reflection and transmission coefficients of the generalized 1-D Schrödinger equation \[ \psi''(k,x)+F(k)\psi(k,x)=[ikP(x)+Q(x)]\psi(k,x),\qquad x\in{\mathbb{R}}, \] where \(P\) and \(Q\) are real potentials that are integrable on the real line after having been multiplied by \((1+|x|)\), as \(k\) approaches one of the (real or complex) zeros of \(F(k)\) are studied in detail. Special attention is paid to the cases \(F(k)=k^2\) (the usual Schrödinger equation if \(P(x)\equiv 0\); the so-called Jaulent equation if \(P(x)\not\equiv 0\)) and \(F(k)=k^2+m^2\) with \(m>0\) (the so-called Kaup equation if \(P(x)\not\equiv 0\)). The proofs are based on ideas first expounded by M. Klaus [Inverse Probl. 4, No. 2, 505-512 (1988; Zbl 0669.34030)].


34L25 Scattering theory, inverse scattering involving ordinary differential operators
81U20 \(S\)-matrix theory, etc. in quantum theory
47A40 Scattering theory of linear operators


Zbl 0669.34030
Full Text: DOI Link


[1] DOI: 10.1007/BF01645775
[2] Jaulent M., Ann. Inst. Henri Poincaré, Sect. A 25 pp 105– (1976)
[3] Jaulent M., Ann. Inst. Henri Poincaré, Sect. A 25 pp 119– (1976)
[4] DOI: 10.1063/1.523064
[5] Sattinger D. H., Differ. Integral Eqs. 8 pp 945– (1995)
[6] DOI: 10.1063/1.532271 · Zbl 1001.34074
[7] DOI: 10.1143/PTP.54.396 · Zbl 1079.37514
[8] DOI: 10.1016/0022-247X(81)90266-3 · Zbl 0477.35074
[9] DOI: 10.1088/0266-5611/12/6/014 · Zbl 0863.35074
[10] Faddeev L. D., Am. Math. Soc. Transl. 2 pp 139– (1964)
[11] DOI: 10.1002/cpa.3160320202 · Zbl 0388.34005
[12] DOI: 10.1088/0266-5611/4/2/013 · Zbl 0669.34030
[13] DOI: 10.1063/1.530089 · Zbl 0777.34056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.