zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A class of new iterative methods for general mixed variational inequalities. (English) Zbl 0953.49016
Summary: In this paper, we use the auxiliary principle technique to suggest a class of predictor-corrector methods for solving general mixed variational inequalities. The convergence of the proposed methods only requires the partially relaxed strong monotonicity of the operator, which is weaker than co-coercivity. As special cases, we obtain a number of known and new results for solving various classes of variational inequalities and related problems.

MSC:
49J40Variational methods including variational inequalities
90C33Complementarity and equilibrium problems; variational inequalities (finite dimensions)
47H10Fixed-point theorems for nonlinear operators on topological linear spaces
47J20Inequalities involving nonlinear operators
WorldCat.org
Full Text: DOI
References:
[1] Baiocchi, C.; Capelo, A.: Variational and quasi-variational inequalities. (1984) · Zbl 0551.49007
[2] Brezis, H.: Operateurs maximaux monotone et semigroups de contractions dans LES espaces de Hilbert. (1973)
[3] Cottle, R. W.; Giannessi, F.; Lions, J. L.: Variational inequalities and complementarity problems: theory and applications. (1980)
[4] Giannessi, F.; Maugeri, A.: Variational inequalities and network equilibrium problems. (1995) · Zbl 0834.00044
[5] Glowinski, R.; Lions, J. L.; Trémolières, R.: Numerical analysis of variational inequalities. (1981)
[6] Lions, J. L.; Stampacchia, G.: Variational inequalities. Comm. pure appl. Math. 20, 493-512 (1967) · Zbl 0152.34601
[7] Marcotte, P.; Wu, J. H.: On the convergence of projection methods: applications to decomposition of affine variational inequalities. J. optim. Theory appl. 85, 347-362 (1995) · Zbl 0831.90104
[8] Naniewicz, Z.; Panagiotopoulos, P. D.: Mathematical theory of hemivariational inequalities and applications. (1995) · Zbl 0968.49008
[9] Noor, M. A.: Algorithms for general monotone mixed variational inequalities. J. math. Anal. appl. 229, 330-343 (1999) · Zbl 0927.49004
[10] Noor, M. A.: General variational inequalities. Appl. math. Lett. 1, No. 2, 119-121 (1988) · Zbl 0655.49005
[11] Noor, M. A.: Wiener-Hopf equations and variational inequalities. J. optim. Theory appl. 79, 197-206 (1993) · Zbl 0799.49010
[12] Noor, M. A.: A new iterative method for monotone mixed variational inequalities. Mathl. comput. Modelling 26, No. 7, 29-34 (1997) · Zbl 0893.49004
[13] Noor, M. A.: An implicit method for mixed variational inequalities. Appl. math. Lett. 11, No. 4, 109-113 (1998) · Zbl 0941.49005
[14] Noor, M. A.: An extraresolvent method for monotone mixed variational inequalities. Mathl. comput. Modelling 29, No. 3, 95-100 (1999) · Zbl 0994.47061
[15] Noor, M. Aslam: Some recent advances in variational inequalities, part I, basic concepts. New Zealand J. Math. 26, 53-80 (1997) · Zbl 0886.49004
[16] Noor, M. A.: Some recent advances in variational inequalities, part II, other concepts. New Zealand J. Math. 26, 229-255 (1997) · Zbl 0889.49006
[17] Noor, M. A.: Some algorithms for general monotone mixed variational inequalities. Mathl. comput. Modelling 29, No. 7, 1-9 (1999) · Zbl 0991.49004
[18] Noor, M. A.: General monotone mixed variational inequalities. J. nat. Geometry (2000) · Zbl 0987.49007
[19] Noor, M. A.: A new predictor-corrector method for noncoercive mixed variational inequalities. Korean J. Comput. appl. Math. 7, No. 1 (2000) · Zbl 0953.49018
[20] Stampacchia, G.: Formes bilineaires coercivities sur LES ensembles convexes. C. R. Acad. sci. Paris 258, 4413-4416 (1964) · Zbl 0124.06401
[21] Tseng, P.: A modified forward-backward splitting method for maximal monotone mappings. S1AM J. Control optim. (1999) · Zbl 0997.90062
[22] Zhu, D. L.; Marcotte, P.: An extended descent framework for variational inequalities. J. optim. Theory appl. 80, 349-366 (1994) · Zbl 0798.49014
[23] Verma, R. U.: Approximation-solvability of nonlinear variational inequalities involving partially relaxed monotone (prm) mappings. Adv. nonlinear var. Inequal. 2, No. 2, 137-148 (1999) · Zbl 1007.49518
[24] Youness, E. A.: E-convex set, E-convex functions and E-convex programming. J. optim. Theory appl. 102, 439-450 (1999) · Zbl 0937.90082