Nielsen, Jens P.; Linton, Oliver; Bickel, Peter J. On a semiparametric survival model with flexible covariate effect. (English) Zbl 0953.62107 Ann. Stat. 26, No. 1, 215-241 (1998). The Cox regression model specifies the stochastic hazard rate at exposure time \(t\) for covariate \(z\) as \[ \lambda(z,t)= \alpha(t) \exp(\beta z), \tag{1} \] where \(\alpha\) is nonparametric while the dependency on the marker or covariate \(z\) is parametric. The authors suppose \[ \lambda(z,t)= \alpha(t; \theta)g(z), \tag{2} \] where \(\alpha\) is a parametric class of hazard functions, while \(g\) is of unknown functional form. In Section 2 are presented the counting process formulation of the model, while in Section 3 are defined estimators of \(\theta\) and \(g\) in (2), based on the profile likelihood principle. In Section 4 are considered the asymptotic properties of the parametric and nonparametric estimates outlining the general approach to the asymptotics. Section 5 contains numerical results and some extensions are discussed in Section 6. The proofs are given in the Appendix. All the sections contain a rich and impressive bibliography. Reviewer: G.G.Vrănceanu (Bucureşti) Cited in 22 Documents MSC: 62N02 Estimation in survival analysis and censored data 62M09 Non-Markovian processes: estimation 62G05 Nonparametric estimation 62F12 Asymptotic properties of parametric estimators 62G20 Asymptotic properties of nonparametric inference Keywords:counting processes; kernel estimation; predictability; semiparametric survival analysis; bibliography × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Aalen, O. O. (1978). Nonparametric inference for a family of counting processes. Ann. Statist. 6 701-726. · Zbl 0389.62025 · doi:10.1214/aos/1176344247 [2] Andersen, P. K., Borgan, Ø., Gill, R. D. and Keiding, N. (1993). Statistical Models Based on Counting Processes. Springer, New York. · Zbl 0769.62061 [3] Andersen, P. K. and Gill, R. D. (1982). Cox’s regression model for counting processes: a large sample study. Ann. Statist. 10 1100-1120. · Zbl 0526.62026 · doi:10.1214/aos/1176345976 [4] Bahadur, R. R. (1967). Rates of convergence of estimates and test statistics. Ann. Math. Statist. 38 303-324. · Zbl 0201.52106 · doi:10.1214/aoms/1177698949 [5] Beran, R. J. (1981). Nonparametric regression with randomly censored survival data. Technical report, Univ. California, Berkeley. [6] Bickel, P. J., Klaassen, C. A. J., Ritov, Y. and Wellner, J. A. (1993). Efficient and Adaptive Inference in Semiparametric Models. Johns Hopkins Univ. Press. · Zbl 0786.62001 [7] Bickel, P. J. and Wichura, M. J. (1971). Convergence criteria for multiparameter stochastic processes and some applications. Ann. Math. Statist. 42 1656-1670. · Zbl 0265.60011 · doi:10.1214/aoms/1177693164 [8] Buckley, J. and James, I. (1979). Linear regression with censored data. Biometrika 66 429-436. · Zbl 0425.62051 · doi:10.1093/biomet/66.3.429 [9] Clay ton, D. and Cuzick, J. (1985). Multivariate generalizations of the proportional hazard model (with discussion). J. Roy. Statist. Soc. Ser. A 148 82-117. JSTOR: · Zbl 0581.62086 · doi:10.2307/2981943 [10] Cox, D. R. (1972). Regression models and life tables (with discussion). J. Roy. Statist. Soc. Ser. B 34 187-220. JSTOR: · Zbl 0243.62041 [11] Cox, D. R. (1974). Partial likelihood. Biometrika 62 269-276. JSTOR: · Zbl 0312.62002 · doi:10.1093/biomet/62.2.269 [12] Cramér, H. (1946). Mathematical Methods in Statistics. Princeton Univ. Press. · Zbl 0063.01014 [13] Dabrowska, D. M. (1987). Non-parametric regression with censored survival time data. Scand. J. Statist. 14 181-192. · Zbl 0641.62024 [14] Dabrowska, D. M. (1989). Uniform consistency of the kernel conditional Kaplan-Meier estimator. Ann. Statist. 17 1157-1167. · Zbl 0687.62035 · doi:10.1214/aos/1176347261 [15] Dabrowska, D. M. (1992). Variable bandwidth conditional Kaplan-Meier estimate. Scand. J. Statist. 19 351-361. · Zbl 0768.62024 [16] Dellacherie, ?. and Meyer, ?. (1980). Probabilities and Potential B. North-Holland, Amsterdam. [17] Friedman, J. H. and Stuetzle, W. (1981). Projection pursuit regression. J. Amer. Statist. Assoc. 76 817-823. JSTOR: [18] Gompertz, B. (1825). On the nature of the function expressive of the law of human mortality. Philos. Trans. Roy. Soc. London. [19] Härdle, W., Hart, J., Marron, J. S. and Tsy bakov, A. B. (1992). Bandwidth choice for average derivative estimation. J. Amer. Statist. Assoc. 87 218-226. JSTOR: · Zbl 0781.62044 · doi:10.2307/2290472 [20] Härdle, W. and Stoker, T. (1989). Estimating smooth multiple regression by the method of average derivatives. J. Amer. Statist. Assoc. 84 986-995. · Zbl 0703.62052 · doi:10.2307/2290074 [21] Jewell, N. P. and Nielsen, J. P. (1993). A framework for consistent prediction rules based on markers. Biometrika 80 153-164. JSTOR: · Zbl 0772.62052 · doi:10.1093/biomet/80.1.153 [22] Jordan, C. W. (1975). Life Contingencies. The Society of Actuaries, Chicago. [23] Klein, R. W. and Spady, R. H. (1991). An efficient semiparametric estimator for binary choice models. Econometrica 61 387-421. JSTOR: · Zbl 0783.62100 · doi:10.2307/2951556 [24] Lin, D. Y. and Ying, Z. (1995). Semiparametric analysis of general additive-multiplicative hazard models for counting processes. Ann. Statist. 23 1712-1734. · Zbl 0844.62082 · doi:10.1214/aos/1176324320 [25] Linton, O. B. (1995). Second order approximation in the partially linear regression model. Econometrica 63 1079-1112. JSTOR: · Zbl 0836.62050 · doi:10.2307/2171722 [26] Linton, O. B. and Nielsen, J. P. (1995). A marginal integration approach to estimating structured nonparametric regression. Biometrika 82 93-101. JSTOR: · Zbl 0823.62036 · doi:10.1093/biomet/82.1.93 [27] Makeham, W. M. (1860). On the law of mortality, and the construction of mortality tables. Journal of the Institute of Actuaries 8. [28] McKeague, I. W. and Utikal, K. J. (1991). Goodness of fit tests for additive hazards and proportional hazards models. Scand. J. Statist. 18 177-195. · Zbl 0803.62038 [29] Meshalkin, L. D. and Kagan, A. R. (1972). Discussion of ”Regression models and life tables,” by D. R. Cox. J. Roy. Statist. Soc. Ser. B 34 213. [30] Nielsen, J. P. (1990). Kernel estimation of densities and hazards: a counting process approach. Ph.D. dissertation, Biostatistics, Univ. California, Berkeley. [31] Nielsen, J. P. (1996). Multiplicative and additive marker dependent hazard estimation based on marginal integration. Unpublished manuscript, PFA Pension. [32] Nielsen, J. P. and Linton, O. B. (1995). Kernel estimation in a nonparametric marker dependent hazard model. Ann. Statist. 23 1735-1748. · Zbl 0847.62023 · doi:10.1214/aos/1176324321 [33] Ramlau-Hansen, H. (1983). Smoothing counting process intensities by means of kernel functions. Ann. Statist. 11 453-466. · Zbl 0514.62050 · doi:10.1214/aos/1176346152 [34] Sandqvist, J. L. (1995). Invalidedødelighed-en semiparametrisk produktmodel. M.Sc. dissertation, Laboratory of Actuarial Science, Univ. Copenhagen. Sasieni, P. (1992a). Non-orthogonal projections and their application to calculating the information in a partly linear Cox model. Scand. J. Statist. 19 215-234. Sasieni, P. (1992b). Information bounds for the conditional hazard ratio in a nested family of regression models. J. Roy. Statist. Soc. Ser. B 54 617-635. [35] Schick, A. (1987). A note on the construction of asy mptotically linear estimators. J. Statist. Plann. Inference 16 89-105. · Zbl 0634.62036 · doi:10.1016/0378-3758(87)90059-0 [36] Shorack, G. R. and Wellner, J. A. (1986). Empirical Processes with Applications to Statistics. Wiley, New York. · Zbl 1170.62365 [37] Silverman, B. W. (1978). Weak and strong uniform consistency of the kernel estimate of a density function and its derivatives. Ann. Statist. 6 177-184. · Zbl 0376.62024 · doi:10.1214/aos/1176344076 [38] Wald, A. (1949). A note on the consistency of the maximum likelihood estimate. Ann. Math. Statist. 20 595-601. · Zbl 0034.22902 · doi:10.1214/aoms/1177729952 [39] Wellner, J. A. (1985). Semiparametric models: progress and problems. Bull. Internat. Statist. Inst. 51(4) 23.1.1-23.1.20. · Zbl 0646.62022 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.