zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An adaptive version of the immersed boundary method. (English) Zbl 0953.76069
Summary: We present a computational setting for the immersed boundary method employing an adaptive mesh refinement. Enhanced accuracy for the method is attained locally by covering an immersed boundary vicinity with a sequence of nested, progressively finer rectangular grid patches which dynamically follow the immersed boundary motion. The set of equations describing the interaction between a non-stationary, viscous incompressible fluid and an immersed elastic boundary is solved by coupling a projection method, specially designed for locally refined meshes, to an implicit formulation of the immersed boundary method. The main contributions of this work concern the formulation and implementation of a multilevel self-adaptive version of the immersed boundary method on locally refined meshes. This approach is tested on a particular two-dimensional model problem, for which no significant difference is found between the solutions obtained on a mesh refined locally around the immersed boundary, and on the associated uniform mesh, built with the resolution of the finest level.

76M20Finite difference methods (fluid mechanics)
76D05Navier-Stokes equations (fluid dynamics)
65M55Multigrid methods; domain decomposition (IVP of PDE)
74F10Fluid-solid interactions
Full Text: DOI
[1] Agresar, G.: A computational environment for the study of circulating cell mechanics and adhesion. (1996)
[2] Agresar, G.; Linderman, J. J.; Tryggvason, G.; Powell, K. G.: An adaptive, Cartesian, front-tracking method for the motion, deformation and adhesion of circulating cells. J. comput. Phys. 143, 346 (1998) · Zbl 0935.76047
[3] S. A. Bayyuk, K. G. Powell, and B. van Leer, A simulation technique for 2-D unsteady inviscid flows around arbitrary moving and deforming bodies of arbitrary geometry, in Proceedings, AIAA 11th Computational Fluid Dynamics Conference, Orlando, FL., July 6--9, 1993, pp. 1013--1024.
[4] Bell, J.; Marcus, D. L.: A second-order projection method for variable density flows. J. comput. Phys. 101, 334 (1992) · Zbl 0759.76045
[5] Bell, J.; Colella, P.; Glaz, H. M.: A second-order projection method for the incompressible Navier--Stokes equations. J. comput. Phys. 85, 257 (1989) · Zbl 0681.76030
[6] Berger, M. J.: Adaptive mesh refinement for hyperbolic partial differential equations. (1982)
[7] Berger, M. J.; Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J. comput. Phys. 82, 64 (1989) · Zbl 0665.76070
[8] Berger, M. J.; Oliger, J.: Adaptive mesh refinement for hyperbolic partical differential equations. J. comput. Phys. 53, 484 (1984) · Zbl 0536.65071
[9] Berger, M. J.; Rigoutsos, I.: An algorithm for point clustering and grid generation. IEEE trans. Systems, man, cybernet. 21, 1278 (September/October 1991)
[10] Beyer, R. P.: A computational model of the cochlea using the immersed boundary method. J. comput. Phys. 98, 145 (1992) · Zbl 0744.76128
[11] Chorin, A. J.: Numerical solution of the Navier--Stokes equations. Math. comp. 22, 745 (1968) · Zbl 0198.50103
[12] Chorin, A. J.: On the convergence of discrete approximations to the Navier--Stokes equations. Comm. pure appl. Math. 23, 341 (1969) · Zbl 0184.20103
[13] P. Colella, A multidimensional second order godunov scheme for conservation laws, Technical Report LBL-17023, Lawrence Berkeley Laboratory, May 1984. [Unpublished]
[14] Fauci, L. J.: Interaction of oscillating filaments--A computational study. J. comput. Phys. 86, 294 (1990) · Zbl 0682.76105
[15] Fogelson, A. L.: A mathematical model and numerical method for studying platelet adhesion and aggregation during blood clotting. J. comput. Phys. 56, 111 (1984) · Zbl 0558.92009
[16] J. A. Greenough, V. Beckner, R. B. Pember, W. Y. Crutchfield, J. B. Bell, and, P. Colella, An adaptive multifluid interface-capturing method for compressible flow in complex geometries, in, Proceedings, AIAA 26th Computational Fluid Dynamics Conference, San Diego, 1995; AIAA Paper 95-1718.
[17] Haj-Hariri, H.; Shi, Q.; Borhan, A.: Thermocapillary motion of deformable drops at finite Reynolds and Marangoni numbers. Phys. fluids 9, 845 (1997)
[18] Harlow, F. H.; Welch, J. E.: Numerical calculation of time-dependent viscous incompressible flow of fluids with free surfaces. Phys. fluids 8, 251 (1965) · Zbl 1180.76043
[19] Howell, L. H.; Bell, J. B.: An adaptive mesh projection method for viscous incompressible flow. SIAM J. Sci. comput. 18, 996 (July 1997) · Zbl 0901.76057
[20] Leveque, R. J.; Li, Z.: The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Numer. anal. 31, 1019 (August 1994) · Zbl 0811.65083
[21] Leveque, R. J.; Li, Z.: Immersed interface methods for Stokes flow with elastic boundaries or surface tension. (February 1995) · Zbl 0879.76061
[22] Li, Z.: The immersed interface method--A numerical approach for partial differential equations with interfaces. (1994)
[23] Li, Z.: Immersed interface method for moving interface problems. (May 1995)
[24] Mayo, A. A.; Peskin, C. S.: An implicit numerical method for fluid dynamics problems with immersed elastic boundaries. Contemp. math. 141, 261 (1993) · Zbl 0787.76055
[25] Minion, M. L.: Two methods for the study of vortex patch evolution on locally refined grids. (May 1994)
[26] Peskin, C. S.: Flow patterns around heart valves: A digital computer method for solving the equations of motion. (July 1972)
[27] Peskin, C. S.: Flow patterns around heart valves: A numerical method. J. comput. Phys. 10, 252 (1972) · Zbl 0244.92002
[28] Peskin, C. S.; Mcqueen, D. M.: A three-dimensional computational method for blood flow in the heart. I. immersed elastic fibers in a viscous incompressible fluid. J. comput. Phys. 81, 372 (1989) · Zbl 0668.76159
[29] Peskin, C. S.; Mcqueen, D. M.: Computational biofluid dynamics. Contemp. math. 141, 161 (1993) · Zbl 0786.76108
[30] C. S. Peskin, and, D. M. McQueen, A general method for the computer simulation of biological systems interacting with fluids, in, Proceedings, SEB Symposium on Biological Fluid Dynamics, Leeds, England, July 5--8, 1994.
[31] Peyret, R.; Taylor, T. D.: Computational methods for fluid flow. (1990) · Zbl 0717.76003
[32] Printz, B. F.: Computer modeling of blood flow through the heart during the complete cardiac cycle. (1992)
[33] Quirk, J. J.: An adaptive mesh refinement algorithm for computational shock hydrodynamics. (1991)
[34] Roma, A. M.: A multilevel self-adaptive version of the immersed boundary method. (January 1996)
[35] Rosar, M. E.: A three-dimensional computer model for fluid flow through a collapsible tube. (June 1994)
[36] M. Sussman, A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and, M. L. Welcome, An adaptive level set approach for incompressible two-phase flows, in, Proceedings, the ASME Fluids Engineering Summer Meeting: Forum on Advances in Numerical Modeling of Free Surface and Interface Dynamics, 1996, Vol, 3, p, 355. · Zbl 0930.76068
[37] M. Sussman, A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and, M. L. Welcome, An adaptive level set approach for incompressible two-phase flows, J. Comput. Phys, to appear. · Zbl 0930.76068
[38] Tu, C.; Peskin, C. S.: Stability and instability in the computation of flows with moving immersed boundaries: A comparison of three methods. SIAM J. Sci. statist. Comput. 13, 1361 (1992) · Zbl 0760.76067
[39] Unverdi, S. O.; Tryggvason, G.: A front-tracking method for viscous, incompressible flows. J. comput. Phys. 100, 25 (1992) · Zbl 0758.76047