zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Scheduling jobs with release dates and tails on two unrelated parallel machines to minimize the makespan. (English) Zbl 0953.90029
Summary: This paper deals with the problem of assigning a set of $n$ jobs, with release dates and tails, to either one of two unrelated parallel machines and scheduling each machine so that the makespan is minimized. This problem will be denoted by $R2|r_i,q_i|C_{\max}$. The model generalizes the problem on one machine $1|r_i,q_i|C_{\max}$, for which a very efficient algorithm exists. In this paper we describe a branch and bound procedure for solving the two machine problem which is partly based on Carlier’s algorithm for the $1|r_i,q_i|C_{\max}$. An $O(n\log n)$ heuristic procedure for generating feasible solutions is given. Computational results are reported.

90B35Scheduling theory, deterministic
90C57Polyhedral combinatorics, branch-and-bound, branch-and-cut
68M20Performance evaluation of computer systems; queueing; scheduling
Full Text: DOI
[1] Barcia, P.; Jörnsten, K.: Improved Lagrangean decomposition: an application to the generalized assignment problem. European journal of operational research 46, 84-92 (1990) · Zbl 0711.90055
[2] Carlier, J.: The one-machine sequencing problem. European journal of operational research 11, 42-47 (1982) · Zbl 0482.90045
[3] Carlier, J.: Scheduling jobs with release dates and tails on identical machines to minimize the makespan. European journal of operational research 29, 298-306 (1987) · Zbl 0622.90049
[4] Coffman, E. G.; Yannakakis, M.; Magazine, M. J.; Santos, C.: Batch sizing and job sequencing on a single machine. Annals of operations research 26, 135-147 (1990) · Zbl 0712.90035
[5] M.R. Garey, D.S. Johnson, Computers and Intractability. A Guide to the Theory of NP-Completeness, Freeman, San Francisco, 1979 · Zbl 0411.68039
[6] Jörnsten, K.; Näsberg, M.: A new Lagrangian relaxation approach to the generalized assignment problem. European journal of operational research 27, 313-323 (1986) · Zbl 0617.90068
[7] E.L. Lawler, Recent results in the theory of machine scheduling, in: A. Bachem, M. Grötschel, B. Korte (Eds.), Mathematical Programming, The State of the Art--Bonn 1982, Springer, Berlin, 1982, pp. 202--231
[8] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, D.B. Shmoys, Sequencing and Scheduling: Algorithms and Complexity, Handbooks in OR and MS, 4, Elsevier, New York, 1993
[9] Lageweg, B. J.; Lenstra, J. K.; Kan, A. H. G. Rinnooy: Minimizing maximum lateness on one machine: computational experience and some applications. Statistica nederlandica 30, 25-41 (1976) · Zbl 0336.90029
[10] J.K. Lenstra, A.H.G, Rinnooy Kan, Sequencing and Scheduling, in: M. O’h Eigeartaigh, J.K. Lenstra, A.H.G. Rinnooy Kan (Eds.), Combinatorial Optimization: Annotated Bibliographies, Wiley, New York, 1985 · Zbl 0557.90044
[11] Mahon, G. B. Mc; Florian, M.: On scheduling with ready times and due dates to minimize maximum lateness. Operations research 23, 475-482 (1975) · Zbl 0301.90024
[12] S. Martello, P. Toth, Knapsack Problems: Algorithms and Computer Implementations, Wiley, Chirchester, 1990 · Zbl 0708.68002
[13] Potts, C. N.: Analysis of a linear programming heuristic for scheduling unrelated parallel machines. Discrete applied mathematics 10, 155-164 (1985) · Zbl 0571.90035