zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Job shop scheduling with a genetic algorithm and machine learning. (English) Zbl 0953.90524
Summary: Dynamic job shop scheduling has been proven to be an intractable problem for analytical procedures. Recent advances in computing technology, especially in artificial intelligence, have alleviated this problem by intelligently restricting the search space considered, thus opening the possibility of obtaining better results. Researchers have used various techniques that were developed under the general rubric of artificial intelligence to solve job shop scheduling problems. The most common of these have been expert systems, genetic algorithms and machine learning. Of these, we identify machine learning and genetic algorithms to be promising for scheduling applications in a job shop. In this paper, we propose to combine complementarily the strengths of genetic algorithms and induced decision trees, a machine learning technique, to develop a job shop scheduling system. Empirical results, using machine learning for releasing jobs into the shop floor and a genetic algorithm to dispatch jobs at each machine, are promising.

90B35Scheduling theory, deterministic
90C59Approximation methods and heuristics
Full Text: DOI