zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Compositions of quadratic forms. (English) Zbl 0954.11011
de Gruyter Expositions in Mathematics. 33. Berlin: Walter de Gruyter. xiii, 417 p. DM 248.00 (2000).
The main theme of this book concerns the composition of sums of squares over $\bbfR$, it goes back to A. Hurwitz. The author considers all facets, variations and generalisations of this theme in great detail. Many different ideas and methods from algebra, geometry, combinatorics and topology have been used and are presented here. The choice of material shows good taste and reveals the author’s love for this subject. A lot of exercises and 25 pages of references to the original literature complete the book. Hurwitz’s original question was the following: $$\cases \text{For which triples }(r,s,n) \text{ is there a normed bilinear pairing}\\ F:\bbfR^r \times\bbfR^s \to\bbfR^n \\ \text{with }|f(x,y)|= |x|\cdot|y|,\text{ i.e. } \sum^r_1 x^2_i\cdot \sum^s_1 y^2_j= \sum^n_1 f^2_k(x,y)? \endcases \tag *$$ He solved this question for the case $s=n$. Part I (Chapters 1-11) of the present book is devoted to this “classical” case and its natural generalisations replacing $\bbfR$ by another field $F$ (always $\text{char} F\ne 2)$ or sums of squares by other quadratic forms. The main results are: (1) Theorem of Radon-Hurwitz: Such an $[r,n,n]$-formula exists (over $\bbfR$ or any other field $F)$ iff $r\le\rho(n)$. For $n=2^{4a+b}\cdot n_0$ (with $0\le b\le 3$, $n_0$ odd) the number $\rho(n)$ is given by the famous equation $\rho (n)=8a+ 2^b\le n$. In particular: $\rho(n)=n \Leftrightarrow n=1,2,4,8$. (2) Let $\sigma,q$ be regular quadratic forms over $F$, $\dim\sigma=s$, $\dim q=n$. We say that $\sigma$ allows composition with $q$ if $\sigma(X) q(Y)=q(Z)$ where $Z$ is a $F$-bilinear expression in $X,Y$. In other words: $\sigma(X)$ is a “similarity” of $q$, in short terms: $\sigma<\text{Sim}(q)$. Cor. 2.12 states: If $\sigma< \text{Sim} (q)$ then $s\le\rho(n)$. (3) The author considers in particular the case $n=2^m$, $s=\rho(n)$. He puts up a conjecture PC$(m)$, which he calls “Pfister Factor Conjecture”: This is possible iff $q$ is a scalar multiple of an $m$-fold multiplicative quadratic form in the sense of the reviewer. He proves PC$(m)$ for $m\le 5$ in Chapter 9 using results on Clifford algebras and involutions. -- [Remark: Recent results of Izhboldin-Karpenko and Hoffmann-Tignol (see the Notes in Ch. 9, p. 175) show that $m$-fold forms can have rather bad properties for $m\ge 4$. Therefore it is not obvious to me that PC$(m)$ should hold for all $m$ and all fields $F$.] Part II (Chapters 12-16) is more difficult, the results are less complete, some proofs are only outlined. The methods used range from algebra to combinatorics (“intercalate matrices”), topology (“Hopf construction”, “hidden maps”), $K$-theory and differential geometry. The main topic concerns computations or estimates for the following three numbers: $$\align r*s & =\min \{n:\exists \text{ normed bilinear map }f:\bbfR^r \times\bbfR^s \to\bbfR^n \text{ as in }(*)\}\\ r\# s & =\min\{n:\exists \text{ nonsingular bilinear map }f:\bbfR^r \times\bbfR^s \to\bbfR^n\}\\ r\circ s & =\min\{n: {n\choose k}\text{ is even for all }k\text{ with }n-r<k<s\}. \endalign$$ By a famous theorem of Stiefel and Hopf we have $r\circ s\le r\# s$, and $r\# s\le r*x\le r\cdot s$ is trivial. Similar invariants can be defined over other fields $F$ instead of $\bbfR$, and even over $\bbfZ$. The best original results are due to K. Y. Lam, S. Yuzvinsky and P. Yiu, e.g. $16*_\bbfZ 16=32$.

11ExxForms and linear algebraic groups
11-02Research monographs (number theory)
12D15Formally real fields