Aizicovici, Sergiu; McKibben, Mark Existence results for a class of abstract nonlocal Cauchy problems. (English) Zbl 0954.34055 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 39, No. 5, 649-668 (2000). The authors study the global existence of a solution to nonlinear evolution equations with nonlocal conditions of the form \[ u'(t) + Au(t) \ni f(t,u(t)), \quad u(0)=g(u), \quad 0<t<T, \tag{*} \] in a real Banach space \(X\). Here, \(A\) is a nonlinear \(m\)-accretive (possibly multivalued) operator on \(X\), \(F: L^1(0,T;X) \to L^1(0,T;X)\) and \(g:L^1(0,T;X) \to \overline {D(A)}\). Using the Schauder fixed point theorem, the Fryszkowski selection theorem and some properties of compact semigroups, the authors prove the existence of integral solutions. This work is a continuation of the paper by S. Aizicovici and Y. Gao [J. Appl. Math. Stochastic Anal. 10, No. 2, 145-156 (1997; Zbl 0883.34065)]. Reviewer: J.Myjak (L’Aquila) Cited in 2 ReviewsCited in 74 Documents MSC: 34G25 Evolution inclusions 34A12 Initial value problems, existence, uniqueness, continuous dependence and continuation of solutions to ordinary differential equations 47H06 Nonlinear accretive operators, dissipative operators, etc. Keywords:nonlocal initial condition; \(m\)-accretive operator; compact semigroup; integral solution Citations:Zbl 0883.34065 PDF BibTeX XML Cite \textit{S. Aizicovici} and \textit{M. McKibben}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 39, No. 5, 649--668 (2000; Zbl 0954.34055) Full Text: DOI OpenURL