zbMATH — the first resource for mathematics

Dirac operators on the quantum group SU(2) and the quantum sphere. (English. Russian original) Zbl 0954.58004
J. Math. Sci., New York 100, No. 2, 2039-2050 (2000); translation from Zap. Nauchn. Semin. POMI 245, 49-65 (1997).
Summary: The problem of constructing the Dirac operators on the quantum group SU(2) and the quantum sphere \(S^2_{q\mu}\) are discussed. In both cases, the constructions presented have the same \(SU_q(2)\)-invariant form and are directly connected with the corresponding Laplace operators.

58B32 Geometry of quantum groups
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
17B37 Quantum groups (quantized enveloping algebras) and related deformations
16W30 Hopf algebras (associative rings and algebras) (MSC2000)
46L87 Noncommutative differential geometry
Full Text: DOI
[1] A. Connes,Noncommutative Geometry, Academic Press, New York (1994).
[2] N. Yu. Reshetikhin, L. A. Takhtajan, and L. D. Faddeev, ”Quantum Lie groups and quantum Lie algebras,”Algebra Analiz,1, 178–206 (1989).
[3] P. Podles, ”Quantum spheres,”Lett. Math. Phys.,14, 193–202, (1987). · Zbl 0634.46054
[4] M. Jimbo, ”Aq-difference analogue ofU (g) and the Yang-Baxter equation,”Lett. Math. Phys.,10, 63–69 (1985). · Zbl 0587.17004
[5] K. Ohta and H. Suzuki, ”Dirac operators on quantum two spheres,”Mod. Phys. Lett. A,141, 2325–2333 (1994). · Zbl 1020.46507
[6] A. Yu. Alekseev and L. D. Faddeev, ”A toy model for conformal field theory,”Commun. Math. Phys.,141, 413–422 (1991). · Zbl 0767.17024
[7] P. Shupp, P. Watts, and B. Zumino, ”Bicovariant quantum algebras and quantum Lie algebras,”Commun. Math. Phys.,157, 305–329 (1993). · Zbl 0808.17010
[8] P. P. Kulish and R. Sasaki, ”Covariance properties of reflection equation algebras,”Progr. Theor. Phys.,89, 741–761 (1993).
[9] P. P. Kulish, ”Quantum groups,q-oscillators, and covariant algebras,”Teor. Mat. Fiz.,93, 193–199 (1993). · Zbl 0973.17503
[10] L. L. Vaksman and Ya. S. Soibelman, ”A function algebra on the quantum group SU(2),”Funkts. Anal. Prilozhen.,22, 1–14 (1988). · Zbl 0667.58018
[11] M. Noumi and K. Mimachi, ”Rogers’sq-ultraspherical polynomials on a quantum 2-sphere,”Duke Math. J.,63, 65–80 (1991). · Zbl 0780.33011
[12] T. Masuda, K. Mimachi, Y. Nakagami, M. Noumi, and K. Ueno, ”Representations of the quantum group SUq(2) and the littleq-Jacobi polynomials,”J. Funct. Anal.,99, 357–386 (1991). · Zbl 0737.33012
[13] N. Berline, E. Getzler, and M. Vergne,Heat Kernels and Dirac Operators, Springer-Verlag, Berlin (1992). · Zbl 0744.58001
[14] J. A. de Azcarraga, P. P. Kulish and F. Rodenas, ”Quantum groups and deformed special relativity,”Fortschr. Phys.,44, 1–40 (1996). · Zbl 1043.81584
[15] H. Grosse, C. Klimcik, and P. Presnajder, ”Simple field theoretical models on noncommutative manifolds,” CERN-TH/95-138, hep-th/9510177; hep-th/9510083; hep-th/9505175.
[16] A. N. Kirillov and N. Yu. Reshetikhin, ”Representations of the algebraU q (sl(2)),q-orthogonal polynomials, and invariants of links,” Preprint LOMI, E-9-88 (1988), in:Infinite-Dimensional Lie Algebras and Groups, Singapore (1989). · Zbl 0742.17018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.