A symplectic mapping for the ergodic magnetic limiter and its dynamical analysis. (English) Zbl 0954.76099

Summary: We present a model for a two-dimensional symplectic mapping describing magnetic field line trajectories in a tokamak perturbed by ergodic magnetic limiter coils. Numerical examples of these trajectories, computed for plasma described by large aspect-ratio equilibria, simulate the main characteristics of trajectories in the toroidal geometry. We also demonstrate the importance of symplecticity of the new mapping regarding certain features of nonlinear dynamical analysis, for which a large number of iterations is necessary. Thus, we apply some standard algorithms, such as the Lyapunov exponents and the rotational transforms, in order to characterize regular and chaotic regions in the parameter space, to improve the study of bifurcations, routes to chaos, and diffusion in this system.


76X05 Ionized gas flow in electromagnetic fields; plasmic flow
76W05 Magnetohydrodynamics and electrohydrodynamics
37N10 Dynamical systems in fluid mechanics, oceanography and meteorology
37N20 Dynamical systems in other branches of physics (quantum mechanics, general relativity, laser physics)
Full Text: DOI


[1] Wooton, A. J., Fluctuations and anomalous transport in tokamaks, Phys Fluids B, 2, 2879 (1990)
[2] Wagner, F.; Stroh, U., Transport in toroidal devices – the experimentalist’s view, Plasma Phys Control Fusion, 35, 1321 (1993)
[3] McCool, S., Electron thermal confinement studies with applied resonant fields on TEXT, Nucl Fusion, 29, 547 (1989)
[4] Punjabi, A.; Verma, A.; Boozer, A., Stochastic broadening of the separatrix of a tokamak divertor, Phys Rev Lett, 69, 3322 (1992)
[5] Karger, F.; Lackner, K., Resonant helical divertor, Phys Lett A, 61, 385 (1977)
[6] Engelhardt, W.; Feneberg, W., Influence of an ergodic magnetic limiter on the impurity content in a tokamak, J Nucl Mater, 76/77, 518 (1978)
[7] Grosman, A., Radiactive layer control experiments with an ergodized zone in tore-supra, J Nucl Mater, 220/222, 188 (1995)
[8] Caldas, I. L.; Pereira, J. M.; Ullmann, K.; Viana, R. L., Magnetic field line mappings for a tokamak with ergodic limiters, Chaos, Solitons & Fractals, 7, 991 (1996)
[9] Ott, E., Dynamical systems (1993), Cambridge University press: Cambridge University press Cambridge · Zbl 0792.58014
[10] Yorke, J. A.; Alligood, K.; Sauer, T., Chaos: An introduction to dynamical systems (1996), Springer: Springer New York · Zbl 0867.58043
[11] Habib, S.; Ryne, R. D., Symplectic calculation of Lyapunov exponents, Phys Rev Lett, 74, 70 (1995)
[12] Schuster, H. G., Deterministic choas (1984), Physica-Verlag: Physica-Verlag Heidelberg · Zbl 0707.58004
[13] Martin, T. J.; Taylor, J. B., Ergodic behavior in a magnetic limiter, Plasma Phys Control Fusion, 26, 321 (1984)
[14] Viana, R. L.; Caldas, I. L., Peripheral stochasticity in tokamak with an ergodic magnetic limiter, Z Naturforsch, 47, 941 (1992)
[15] Regianni, N.; Sakanaka, P. H., The effect of the magnetic limiter current on the peripheral chaotic region of a tokamak, Plasma Phys Control Fusion, 36, 513 (1994)
[16] Cary, J. R.; Littlejohn, R. G., Noncanonical hamiltonian mechanics and its applications to magnetic field line flow, Ann Phys, 151, 1 (1983)
[17] Lichtenberg AL, Lieberman MA. Regular and chaotic motion. 2nd ed. New York: Springer, 1992; Lichtenberg AL, Lieberman MA. Regular and chaotic motion. 2nd ed. New York: Springer, 1992 · Zbl 0748.70001
[18] Kucinski, M. Y.; Caldas, I. L.; Monteiro, L. H.A.; Okano, V., Toroidal plasma equilibrium with arbitrary current distribution, J Plasma Phys, 44, 303 (1990)
[19] Nascimento, I. C.; Caldas, I. L.; Galvão, R. M.O., Tokamak research at University of São Paulo, J Fusion Energy, 12, 529 (1994)
[20] Almeida, A. M.O., On the symplectically invariant variational principle and generating functions, Proc Royal Soc London A, 431, 403 (1990) · Zbl 0718.58021
[21] Hazeltine, H. D.; Meiss, J. D., Plasma confinement (1992), Addison Wesley: Addison Wesley New York
[22] Carreras, B.; Hicks, H. R.; Waddell, B. V., Tearing-mode activity for hollow current profiles, Nucl Fusion, 19, 583 (1979)
[23] Baptista, M. S.; Caldas, I. L., Dynamics of the kicked logistic map, Chaos, Solitons & Fractals, 7, 991 (1996) · Zbl 1080.37521
[24] Ullmann, K.; Caldas, I. L., Transitions in the parameter space of a periodically forced dissipative system, Chaos, Solitons & Fractals, 7, 1913 (1996)
[25] Rössler, J.; Kiwi, M.; Hess, B.; Markus, M., Modulated non-linear processes and a novel mechanism to induce chaos, Phys Rev A, 39, 5954 (1989)
[26] Gallas, J. A.C., Structure of the parameter space of the Hénon map, Phys Rev Lett, 70, 2714 (1993)
[27] Viana, R. L.; Vasconcelos, D. B., Field-line stochasticity in tokamak with an ergodic magnetic limiter, Dynamics Stability Systems, 12, 75 (1997) · Zbl 0876.34066
[28] Oda, G. A.; Caldas, I. L., Dimerized island chains in tokamaks, Chaos, Solitons & Fractals, 5, 15 (1995) · Zbl 0824.58041
[29] Leviton, F. M., Improved confinement with reversed magnetic shear in TFTR, Phys Rev Lett, 75, 4417 (1995)
[30] Strait, E. J., Enhanced confinement and stability in DIII-D discharges with reversed magnetic shear, Phys Rev Lett, 75, 4421 (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.