×

Predicting random fields with increasing dense observations. (English) Zbl 0955.62095

This paper deals with the spectral characteristics of the errors of optimal linear predictors for weakly stationary random fields. The work gives a number of new rates of convergence to optimality for predictors based on an incorrect spectral density when the ratio of the incorrect to the correct spectral density tends to 1 at high frequencies.

MSC:

62M20 Inference from stochastic processes and prediction
62M40 Random fields; image analysis
41A25 Rate of convergence, degree of approximation
Full Text: DOI

References:

[1] ADAMS, R. A. 1978. Sobolev Spaces. Academic Press, San Diego. Z. · doi:10.4153/CJM-1978-018-8
[2] CAMBANIS, S. 1985. Sampling designs for time series. In Time Series in the Time Domain. Z. Handbook of Statistics E. J. Hannan, P. R. Krishnaiah and M. M. Rao, eds. 5 337 362. North-Holland, Amsterdam. Z.
[3] CARR, J. R. 1990. Application of spatial filter theory to kriging. Math. Geol. 22 1063 1079. Z.
[4] CHRISTAKOS, G. 1992. Random Field Models in Earth Sciences. Academic Press, San Diego. Z.
[5] CHRISTENSEN, R. 1991. Linear Models for Multivariate, Time Series, and Spatial Data. Springer, New York.Z. · Zbl 0717.62079
[6] CLEVELAND, W. S. 1971. Projection with the wrong inner product and its application to regression with correlated errors and linear filtering of time series. Ann. Math. Statist. 42 616 624. Z. · Zbl 0234.62026 · doi:10.1214/aoms/1177693411
[7] CRESSIE, N. A. C. 1993. Statistics for Spatial Data, rev. ed. Wiley, New York. Z. · Zbl 0799.62002
[8] DALEY, R. 1991. Atmospheric Data Analy sis. Cambridge Univ. Press. Z.
[9] EUBANK, R. L. SMITH, P. L. and SMITH, P. W. 1982. A note on optimal and asy mptotically optimal designs for certain time series models. Ann. Statist. 10 1295 1301. Z. · Zbl 0522.62055 · doi:10.1214/aos/1176345995
[10] GRAVES, L. M. 1956. The Theory of Functions of Real Variables, 2nd ed. McGraw-Hill, New York. Z. · Zbl 0070.05203
[11] HANDCOCK, M. S. and STEIN, M. L. 1993. A Bayesian analysis of kriging. Technometrics 35 403 410.
[12] HANDCOCK, M. S. and WALLIS, J. R. 1994. An approach to statistical spatial temporal modeling Z. of meteorological fields with discussion. J. Amer. Statist. Assoc. 89 368 390. Z. JSTOR: · Zbl 0798.62109 · doi:10.2307/2290832
[13] HANNAN, E. J. 1970. Multiple Time Series. Wiley, New York. Z. · Zbl 0211.49804
[14] IBRAGIMOV, I. A. and ROZANOV, Y. A. 1978. Gaussian Random Processes. Springer, New York. Z. · Zbl 0392.60037
[15] JERRI, A. J. 1977. The Shannon sampling theorem its various extensions and applications: a tutorial review. Proc. IEEE 65 1565 1596. Z. · Zbl 0442.94002 · doi:10.1109/PROC.1977.10771
[16] RITTER, K. 1995. Average case analysis of numerical problems. Thesis, Univ. Erlangen, Germany. Z.
[17] RITTER, K. 1996. Asy mptotic optimality of regular sequence designs. Ann. Statist. 24 2081 2096. Z. Z · Zbl 0905.62077 · doi:10.1214/aos/1069362311
[18] ROBINSON, G. K. 1991. That BLUP is a good thing: the estimation of random effects with. discussion. Statist. Sci. 6 15 51. Z. · Zbl 0955.62500 · doi:10.1214/ss/1177011926
[19] SACKS, J. and YLVISAKER, D. 1966. Designs for regression problems with correlated errors. Ann. Math. Statist. 37 66 89. Z. · Zbl 0152.17503 · doi:10.1214/aoms/1177699599
[20] SACKS, J. and YLVISAKER, D. 1968. Designs for regression problems with correlated errors: many parameters. Ann. Math. Statist. 39 49 69. Z. · Zbl 0165.21505 · doi:10.1214/aoms/1177698504
[21] SACKS, J. and YLVISAKER, D. 1970. Designs for regression problems with correlated errors III. Ann. Math. Statist. 41 2057 2074. Z. · Zbl 0234.62025 · doi:10.1214/aoms/1177696705
[22] SACKS, J. and YLVISAKER, D. 1971. Statistical designs and integral approximation. In ProceedZ. ings of the Twelfth Biennial Canadian Math. Society Seminar R. Py ke, ed. 115 136. Canadian Math. Congress, Montreal. Z. · Zbl 0291.62090
[23] STARKS, T. H. and SPARKS, A. R. 1987. Rejoinder to “Comment on ‘Estimation of the generalized covariance function. II. A response surface approach’ by Thomas H. Starks and Allen R. Sparks.” Math. Geol. 19 789 792. Z.
[24] STEIN, M. L. 1990a. Uniform asy mptotic optimality of linear predictions of a random field using an incorrect second-order structure. Ann. Statist. 18 850 872. Z. · Zbl 0716.62099 · doi:10.1214/aos/1176347629
[25] STEIN, M. L. 1990b. Bounds on the efficiency of linear predictions using an incorrect covariance function. Ann. Statist. 18 1116 1138. Z. · Zbl 0749.62061 · doi:10.1214/aos/1176347742
[26] STEIN, M. L. 1993. A simple condition for asy mptotic optimality of linear predictions of random fields. Statist. Probab. Lett. 17 399 404. Z. · Zbl 0779.62093 · doi:10.1016/0167-7152(93)90261-G
[27] STEIN, M. L. 1997. Efficiency of linear predictors for periodic processes using an incorrect covariance function. J. Statist. Plann. Inference 58 321 331. Z. · Zbl 0877.62084 · doi:10.1016/S0378-3758(96)00088-2
[28] WAHBA, G. 1974. Regression design for some equivalence classes of kernels. Ann. Statist. 2 925 934. Z. · Zbl 0291.62091 · doi:10.1214/aos/1176342814
[29] YAGLOM, A. M. 1987. Correlation Theory of Stationary and Related Random Functions 1. Springer, New York. · Zbl 0685.62078
[30] CHICAGO, ILLINOIS 60637 E-MAIL: stein@galton.uchicago.edu
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.