What did Fisher mean by ”inverse probability” in 1912–1922? (English) Zbl 0955.62526

Summary: The method of maximum likelihood was introduced by R. A. Fisher in 1912, but not until 1922 under that name. This paper seeks to elucidate what Fisher understood by the phrase ‘inverse probability,’ which he used in various ways before defining ‘likelihood’ in 1921 to clarify his meaning.


62A01 Foundations and philosophical topics in statistics
62-03 History of statistics
Full Text: DOI


[1] BAy ES, T. 1764. An essay towards solving a problem in the doctrine of chances. Philos. Trans. Roy. Soc. 53 370 418. Reprinted in Studies in the history of probability and statistics IX: Thomas Bay es’ essay towards solving a probZ lem in the doctrine of chances with a biographical note by. Z. G. A. Barnard Biometrika 45 293 315 1958 and in PearZ. son and Kendall 1970. Z.
[2] BERNOULLI, J. 1713. Ars Conjectandi. Thurnisius, Basilea.
[3] BOOLE, G. 1854. An Investigation of the Laws of Thought.
[4] BOX, J. F. 1978. R. A. Fisher: The Life of a Scientist. Wiley, New York. Z. · Zbl 0666.01016
[5] DALE, A. I. 1988. On Bay es’ theorem and the inverse Bernoulli theorem. Historia Math. 15 348 360. Z. · Zbl 0672.01012
[6] DALE, A. I. 1991. A History of Inverse Probability. Springer, New York. Z.
[7] DE MOIVRE, A. 1738. The Doctrine of Chances, 2nd ed. Woodfall,
[8] DE MORGAN, A. 1838. An Essay on Probabilities and Their Application to Life Contingencies and Insurance Offices. Longman, Orme, Brown, Green, & Longmans, London. Z.
[9] EDWARDS, A. W. F. 1972. Likelihood. Cambridge Univ. Press. · Zbl 0231.62005
[10] EDWARDS, A. W. F. 1974a. The history of likelihood. Interna tional Statistical Review 42 9 15. Reprinted in Edwards Z. 1992. Z. JSTOR: · Zbl 0289.62006
[11] EDWARDS, A. W. F. 1974b. A problem in the doctrine of chances. In Proceedings of the Conference on Foundational Questions Z in Statistical Inference O. Barndorff-Nielsen, P. Blæsild and. G. Schou, eds. 43 60. Aarhus Univ. Reprinted in Edwards Z. 1992. Z. · Zbl 0352.62004
[12] EDWARDS, A. W. F. 1978. Commentary on the arguments of Thomas Bay es. Scand. J. Statist. 5 116 118. Z. Z. · Zbl 0371.62005
[13] EDWARDS, A. W. F. 1986. Is the reference in Hartley 1745 to Bayesian inference? Amer. Statist. 40 109 110. Z. Z. JSTOR:
[14] EDWARDS, A. W. F. 1992. Likelihood expanded edition. Johns Hopkins Univ. Press. Z.
[15] EDWARDS, A. W. F. 1996. The early history of the statistical estimation of linkage. Annals of Human Genetics 60 237 249. Z.
[16] FISHER, R. A. 1912. On an absolute criterion for fitting frequency curves. Messenger of Mathematics 41 155 160. Z. · JFM 43.0302.01
[17] FISHER, R. A. 1915. Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika 9 507 521. Z.
[18] FISHER, R. A. 1921. On the “probable error” of a coefficient of correlation deduced from a small sample. Metron 1 3 32. Z.
[19] FISHER, R. A. 1922. On the mathematical foundations of theoretical statistics. Philos. Trans. Roy. Soc. London Ser. A 222 309 368. Z. · JFM 48.1280.02
[20] FISHER, R. A. 1930. Inverse probability. Proc. Cambridge Philos. Soc. 26 528 535. Z. · JFM 56.1083.05
[21] FISHER, R. A. 1932. Inverse probability and the use of likelihood. Proc. Cambridge Philos. Soc. 28 257 261. Z. · Zbl 0005.17404
[22] FISHER, R. A. 1936. Uncertain inference. Proceedings of the American Academy of Arts and Science 71 245 258. Z. Z. · Zbl 0015.36301
[23] GEISSER, S. 1992. Introduction to Fisher 1922 On the mathematical foundations of theoretical statistics. In BreakZ throughs in Statistics 1. Foundations and Basic Theory S.. Kotz and N. L. Johnson, eds. 1 10. Springer, New York. Z. · Zbl 0825.62414
[24] HARTLEY, D. 1745. Observations on Man, His Frame, His Duty,
[25] HUME, D. 1739. A Treatise of Human Nature L. A. Selby. Bigge, ed., 1888 and later printings. Clarendon, Oxford. Z.
[26] JEFFREy S, H. 1938. Maximum likelihood, inverse probability, and the method of moments. Annals of Eugenics 8 146 151. Z. · JFM 64.1207.02
[27] LAPLACE, P. S. DE 1774. Memoire sur la probabilite des causes \' \'
[28] MOLINA, E. C. 1931. Bay es’ theorem: an expository presentation. Ann. Math. Statist. 2 23 37. Z. · Zbl 0004.40704
[29] PEARSON, E. S. 1968. Some early correspondence between W. S. Gosset, R. A. Fisher and Karl Pearson, with notes and comments. Biometrika 55 445 457. Reprinted in Pearson Z. and Kendall 1970. Z. JSTOR:
[30] PEARSON, E. S. 1990. ‘Student’: A Statistical Biography of Z William Sealy Gosset R. L. Plackett, ed., with the assis. tance of G. A. Barnard. Clarendon, Oxford. Z. · Zbl 0711.01030
[31] PEARSON, E. S. and KENDALL, M. G. 1970. Studies in the History of Statistics and Probability. Griffin, London. · Zbl 0206.17902
[32] PEARSON, K. 1902. On the sy stematic fitting of curves to observations and measurements. Biometrika 1 265 303. Z.
[33] SMITH, C. A. B. 1986. The development of human linkage analysis. Annals of Human Genetics 50 293 311.
[34] SOPER, H. E., YOUNG, A. W., CAVE, B. M., LEE, A. and PEARSON, Z. K. 1917. On the distribution of the correlation coefficient in small samples. Appendix II to the papers of ‘Student’ and R. A. Fisher. A cooperative study. Biometrika 11 328 413. Z.
[35] STIGLER, S. M. 1983. Who discovered Bay es’s Theorem? Amer. Statist. 37 290 296. Z.
[36] STIGLER, S. M. 1986. Laplace’s 1774 memoir on inverse probability. Statist. Sci. 1 359 378. Z. · Zbl 0618.62002
[37] TODHUNTER, I. 1865. A History of the Mathematical Theory of Probability. Macmillan, Cambridge and London. Reprinted Z. 1965 by Chelsea, New York. Z.
[38] VENN, J. 1866. The Logic of Chance. Macmillan, Cambridge and London. Z. · Zbl 0122.13106
[39] ZABELL, S. 1989. R. A. Fisher on the history of inverse probability. Statist. Sci. 4 247 263. · Zbl 0955.01501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.