zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Configurational forces and a constitutive theory for crack propagation that allows for kinking and curving. (English) Zbl 0955.74004
Summary: This paper develops a framework for dynamical fracture, concentrating on the derivation of balance equations and constitutive equations that describe the motion of the crack tip in two space dimensions. The theory is based on a configurational force balance and on a mechanical version of the second law of thermodynamics. Kinking and curving of the crack are allowed under the assumption that the crack will propagate in the direction that maximizes the rate at which it dissipates energy.

MSC:
74A45Theories of fracture and damage
74A20Theory of constitutive functions
WorldCat.org
Full Text: DOI
References:
[1] Atkinson, C. and Eshelby, J. D. (1968) International Journal of Fracture 4, 3.
[2] Cahn, J. W. and Hoffman, D. W. (1974) Acta Metallurgica 22, 1205.
[3] Cotterell, B. (1965) International Journal of Fracture 1, 96.
[4] Cotterell, B. and Rice, J. R. (1980) International Journal of Fracture 16, 155.
[5] Dascalu, G. and Maugin, G. A. (1993) C. R. Acad. Sci. Paris II-317, 1135.
[6] Eshelby, J. D. (1951) Phil. Trans. A244, 87.
[7] Eshelby, J. D. (1956) Progress in Solid State Physics, ed. F. Seitz and D. Turnbull, Vol. 3. Academic, New York.
[8] Eshelby, J. D. (1970) Inelastic Behavior of Solids, ed. M. Kanninen, W. Adler, A. Rosenfield and R. Jaffee. McGraw-Hill, New York.
[9] Frank, F. C. (1963) Growth and Perfection of Crystals, ed. R. H. Doremus, B. W. Roberts and D. Turnbull. John Wiley, New York.
[10] Freund, L. B. (1972) Journal of Elasticity 2, 341. · Zbl 0237.73099
[11] Freund, L. B. (1990) Dynamic Fracture Mechanics. Cambridge University Press. · Zbl 0712.73072
[12] Gjostein, N. A. (1963) Acta Metallurgica 11, 969.
[13] Gurtin, M. E. (1993) Thermomechanics of Evolving Phase Boundaries in the Plane. Oxford University Press. · Zbl 0787.73004
[14] Gurtin, M. E. (1995) Arch. Rational Mech. Anal. 131, 67.
[15] Gurtin, M. E. (1999) Configurational Forces as Basic Concepts of Continuum Physics, forthcoming.
[16] Gurtin, M. E. and Podio-Guidugli, P. (1996) Mech. Phys. Solids 44, 905.
[17] Gurtin, M. E. and Struthers, A. (1990) Archive for Rational Mechanics and Analysis 112, 97.
[18] Herring, C. (1951a) The Physics of Powder Metallurgy, ed. W. E. Kingston. McGraw-Hill, New York.
[19] Herring, C. (1951b) Phys. Rev. 82, 87.
[20] Hoffman, D. W. and Cahn, J. W. (1972) Surface Science 31, 368.
[21] Hussain, M. A., Pu, S. L. and Underwood, J. (1974) Fracture Analysis. ASTM STP 560, American Society for Testing and Materials.
[22] Irwin, G. R. (1948) Fracturing of Metals. Cleveland, American Society of Metals.
[23] Lam, P. S. and Freund, L. B. (1985) Journal of the Mechanics and Physics of Solids 33, 153.
[24] Le, K. C. (1989a) Advances in Fracture, Vol. 1. Pergamon, Oxford.
[25] Le, K. C. (1989b) Brittle Matrix Composites, Vol. 2. Elsevier, New York.
[26] Maugin, G. A. (1993) Material Inhomogeneities in Elasticity. Chapman and Hall, London. · Zbl 0797.73001
[27] Maugin, G. A. (1995) Applied Mechanics Review 48, 213.
[28] Palaniswamy, K. and Knauss, W. G. (1978) Mechanics Today, ed. S. Nemat-Nasser, Vol. 4. Pergamon, Oxford.
[29] Podio-Guidugli, P. (1997) Ann. Mat. Pura Appl. 171, 103.
[30] Rice, J. R. (1968) In Fracture, ed. H. Liebowitz, Vol. 2. Academic, New York.
[31] Rosakis, A. J., Duffy, J. and Freund, L. B. (1984) Journal of the Mechanics and Physics of Solids 32, 443.
[32] Stumpf, H. and Le, K. C. (1990) Acta Mechanica 83, 25.
[33] Stumpf, H. and Le, K. C. (1992) Z. angew. Math. Mech. 72, 387.
[34] Truesdell, C. A. and Noll, W. (1965) The non-linear field theories of mechanics. In Handbuchder Physik, ed. S. Flugge, Vol. III3. Springer Verlag, Berlin. · Zbl 0779.73004
[35] Zehnder, A. T. and Rosakis, A. J. (1990) International Journal of Fracture 43, 271.