zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An application-oriented view of modeling uncertainty. (English) Zbl 0955.91029
Summary: Uncertainty is involved in many real phenomena. Whether one considers uncertainty explicitly when modeling such a phenomenon is one of the modeling decisions, the result of which will depend on the context. If, however, the modeler decides to consider uncertainty, he or she will have to select the method for modeling it. Some scientists claim that one theory, e.g. probability theory, is sufficient to model all kinds of uncertainty. Here it is claimed, however, that the choice of the appropriate method is context dependent and an approach is suggested to determine context-dependently a suitable method to model uncertainty.

91B30Risk theory, insurance
93A30Mathematical modelling of systems
Full Text: DOI
[1] Atanassov, K. T.: Intuitonistic fuzzy sets. Fuzzy sets and systems 20, 87-96 (1986) · Zbl 0631.03040
[2] Bellmann, R.; Zadeh, L. A.: Decision-making in a fuzzy environment. Management science 17B, 141-164 (1970)
[3] Ben-Haim, Y.; Elishakoff, I.: Convex models of uncertainty in applied mechanics. (1990) · Zbl 0703.73100
[4] Dubois, D.; Prade, H.: Possibility theory. (1988) · Zbl 0645.68108
[5] Dubois, D.; Prade, H.: Fuzzy sets, probability and measurement. European journal of operational research 40, 135-154 (1989) · Zbl 0663.90050
[6] Goodman, I. R.; Nguyen, H. T.: Uncertainty models for knowledge-based systems. (1985) · Zbl 0576.94001
[7] Kandel, A.; Langholz, G.: Hybrid architectures for intelligent systems. (1992)
[8] Klein, R. L.; Methlie, L. B.: Knowledge-based decision support systems, second ed. (1995)
[9] Klir, G. J.; Folger, T. A.: Fuzzy sets, uncertainty and information. (1988) · Zbl 0675.94025
[10] Klir, G. J.: Where do we stand on measures of uncertainty, ambiguity, fuzziness, and the like?. Fuzzy sets and systems 24, 141-160 (1987) · Zbl 0633.94026
[11] Newell, A.; Simon, H. A.: Human problem solving. (1972)
[12] Pawlak, Z.: Rough sets. Fuzzy sets and systems 17, 99-102 (1985) · Zbl 0588.04004
[13] Schneider, D.: Meßbarkeit subjektiver wahrscheinlichkeiten als erscheinungsformen der ungewißheit. Zeitschrift für betriebswirtschaftliche forschung 31, 89-122 (1979)
[14] Shafer, G.A., 1976. A Mathematical Theory of Evidence. Princeton University Press, Princeton, NJ · Zbl 0359.62002
[15] Sneath, P.H.A., Sokal, R., 1973. Numerical Taxonomy. San Francisco · Zbl 0285.92001
[16] Turban, E.: Decision support and expert systems, second ed. (1988) · Zbl 0853.68144
[17] Zimmermann, H. -J.; Zysno, P.: Latent connectives in human decision making. Fuzzy sets and systems 4, 37-51 (1980) · Zbl 0435.90009
[18] Zimmermann, H.-J., 1988. Uncertainties in Expert Models. In: Mitra, G. (Ed.), Mathematical Models for Decision Support. Springer, Berlin, pp. 613--630
[19] Zimmermann, H.-J., 1996. Fuzzy Set Theory and its Applications, third ed., Boston · Zbl 0845.04006