zbMATH — the first resource for mathematics

Stickelberger subideals related to Kummer type congruences. (English) Zbl 0956.11009
Summary: A new type of the Kummer system of congruences is considered and some equivalent systems are discussed by using a polynomial identity. Further we define a special Stickelberger subideal in a certain group ring and transfer the Fueter type system into the group ring. Afterwards, by evaluating the determinant of a special matrix we deduce the index formula between the group ring, and the Stickelberger subideal in terms of the relative class number of the \(l\)th cyclotomic field (where \(l\geq 5\) is an odd prime).
11D41 Higher degree equations; Fermat’s equation
11B68 Bernoulli and Euler numbers and polynomials
11R54 Other algebras and orders, and their zeta and \(L\)-functions
11R29 Class numbers, class groups, discriminants
11R18 Cyclotomic extensions
Full Text: EuDML
[1] AGOH T.: On the Kummer-Mirimanoff congruences. Acta Arith. 55 (1990), 141-156. · Zbl 0648.10013
[2] AGOH T.: Some variations and consequences of the Kummer-Mirimanoff congruences. Acta Arith. 62 (1992), 73-96. · Zbl 0738.11031
[3] AGOH T.-MORI K.: Kummer type system of congruences and bases of Stickelberger subideals. Arch. Math. (Brno) 32 (1996), 211-232. · Zbl 0903.11007
[4] AGOH T.-SKULA L.: Kummer type congruences and Stickelberger subideals. Acta Arith. 75 (1996), 235-250. · Zbl 0841.11012
[5] BENNETON G.: Sur le dernier théoréme de Fermat. Ann. Sci. Univ. Besancon Math. 3 (1974). · Zbl 0348.10010
[6] FUETER R.: Kummers Kriterium zum letzten Theorem von Fermat. Math. Ann. 85 (1922), 11-20. · JFM 48.0130.05
[7] GRANVILLE A.: Diophantine Equations with Varying Exponents (with Special Reference to FermaVs Last Theorem). Ph.D. Thesis, Queen’s Univ., 1989.
[8] HAZAMA F.: Demjanenko matrix, class number, and Hodge group. J. Number Theory 34 (1990), 174-177. · Zbl 0697.12003
[9] IWASAWA K.: A class number formula for cyclotomic fields. Ann. of Math. 76 (1962), 171-179. · Zbl 0125.02003
[10] KUMMER E. E.: Einige Sätze über die aus den Wurzeln der Gleichung \(a^\lambda = 1\) gebildeten complexen Zahlen, für den Fall, dafl die Klassenanzahl durch \lambda teilbar ist, nebst Anwendung derselben auf einen weiteren Beweis des letzten Fermat’schen Lehrsatzes. Abhandl. Königl. Akad. Wiss. Berlin (1857), 41-74 [Collected papers, Vol. I, 639-692].
[11] RIBENBOIM P.: 13 Lectures on Fermat’s Last Theorem. Springer-Verlag, New York, 1979. · Zbl 0456.10006
[12] SINNOTT W.: On the Stickelberger ideal and the circular units of an abelian field. Invent. Math. 62 (1980), 181-234. · Zbl 0465.12001
[13] SKULA L.: A remark on Mirimanoff polynomials. Comment. Math. Univ. Sancti Pauli (Tokyo) 31 (1982), 89-97. · Zbl 0496.10006
[14] SKULA L.: Some bases of the Stickelberger ideal. Math. Slovaca 43 (1993), 541-571. · Zbl 0798.11044
[15] SKULA L.: On a special ideal contained in the Stickelberger ideal. J. Number Theory 58 (1996), 173-195. · Zbl 0861.11063
[16] WASHINGTON L. C.: Introduction to Cyclotomic Fields. Springer-Verlag, New York, 1982. · Zbl 0484.12001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.