Dragomir, S. S.; Cho, Y. J.; Kim, S. S. Inequalities of Hadamard’s type for Lipschitzian mappings and their applications. (English) Zbl 0956.26015 J. Math. Anal. Appl. 245, No. 2, 489-501 (2000). The authors prove the following two inequalities of Hadamard’s type: Let \(f:I\subseteq \mathbb{R\rightarrow R}\) be an \(M\)-Lipschitzian mapping on \(I\) and \(a,b\in I\) with \(a < b\). Then we have the inequalities \[ \left|f\left( \frac{a+b}{2}\right) -\frac{1}{b-a}\int_{a}^{b}f(x) dx\right|\leq \frac{M}{4}(b-a) \] and \[ \left|\frac{f(a)+f(b)}{2}- \frac{1} {b-a} \int_{a}^{b}f(x) dx\right|\leq \frac{M}{3}(b-a). \] Some applications for means of two positive numbers are also given. Reviewer: G.Toader (Cluj-Napoca) Cited in 5 ReviewsCited in 42 Documents MSC: 26D15 Inequalities for sums, series and integrals 26E60 Means 26A16 Lipschitz (Hölder) classes Keywords:Hadamard’s inequality; \(M\)-Lipschitzian mapping; means PDF BibTeX XML Cite \textit{S. S. Dragomir} et al., J. Math. Anal. Appl. 245, No. 2, 489--501 (2000; Zbl 0956.26015) Full Text: DOI Link OpenURL References: [1] Dragomir, S.S., Two refinements of Hadamard’s inequalities, Coll. of sci. pap. of the fac. of sci., kragujevac (yugoslavia), 11, 23-26, (1990) · Zbl 0729.26017 [2] Dragomir, S.S.; Pečarić, J.E.; Sándor, J., A note on the jensen – hadamard’s inequality, Anal. num. theor. approx., 19, 21-28, (1990) · Zbl 0743.26016 [3] Dragomir, S.S., Some refinements of Hadamard’s inequality, Gaz. mat. metod. (romania), 11, 189-191, (1990) [4] Dragomir, S.S., A mapping in connection with Hadamard’s inequalities, An. öster. akad. wiss. math.-natur. (wien), 123, 17-20, (1991) · Zbl 0747.26015 [5] Dragomir, S.S., Two mappings in connection to Hadamard’s inequalities, J. math. anal. appl., 167, 49-56, (1992) · Zbl 0758.26014 [6] Dragomir, S.S.; Ionescu, N.M., Some integral inequalities for differentiable convex functions, Coll. of sci. pap. of the fac. of sci. kragujevac (yugoslavia), 13, 11-16, (1992) · Zbl 0770.26009 [7] Dragomir, S.S., Some integral inequalities for differentiable convex functions, Contrib. Macedonian acad. sci. arts, 16, 77-80, (1992) [8] Dragomir, S.S., On Hadamard’s inequalities for convex functions, Mat. balkanica, 6, 215-222, (1992) · Zbl 0834.26010 [9] Dragomir, S.S., A refinement of Hadamard’s inequality for isotonic linear functionals, Tamkang J. of math. (Taiwan), 24, 101-106, (1993) · Zbl 0799.26016 [10] Dragomir, S.S., A note on Hadamard’s inequalities, Mathematica (romania), 35, 21-24, (1993) · Zbl 0807.26010 [11] Dragomir, S.S.; Milosévić, D.M.; Sándor, J., On some refinements of Hadamard’s inequalities and applications, Univ. beograd publ. elektrotehn. fak. ser. math., 4, 21-24, (1993) [12] Dragomir, S.S.; Barbu, D.; Buse, C., A probabilistic argument for the convergence of some sequences associated to Hadamard’s inequality, Studia univ. “babes-bolyai” math., 38, 29-33, (1993) · Zbl 0829.26009 [13] Dragomir, S.S.; Toader, Gh., Some inequalities for m-convex functions, Studia univ. babes-bolyia math., 38, 21-28, (1993) · Zbl 0829.26010 [14] Dragomir, S.S., Some remarks on Hadamard’s inequalities for convex functions, Extracta math., 9, 88-94, (1994) · Zbl 0984.26012 [15] Pečarić, J.E.; Dragomir, S.S., On some integral inequalities for convex functions, Bull. inst. Pol. iasi. (romania), 36, 19-23, (1990) · Zbl 0765.26008 [16] Pečarić, J.E.; Dragomir, S.S., A generalization of Hadamard’s inequality for isotonic linear functionals, Radovi mat. (sarajevo), 7, 299-303, (1991) · Zbl 0738.26006 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.