Stańczy, Robert Decaying solutions for semilinear elliptic equations in exterior domains. (English) Zbl 0956.35049 Topol. Methods Nonlinear Anal. 14, No. 2, 363-370 (1999). The author considers the following problem \[ \begin{gathered} -\Delta u = f(\|x\|,u)\quad\text{for}\quad \|x\|\geq 1,\quad x\in\mathbb R^n, \quad n\geq 3\\ u(x) = 0 \quad\text{for}\quad \|x\|= 1,\quad \lim_{\|x\|\to\infty} u(x) = 0. \end{gathered} \] It is proved the existence of at least one radial solution. Typified nonlinearities: \(f(r,v) = h(r)g(v)\), where \(h: [1,\infty)\rightarrow\mathbb R\) and \(g: \mathbb R\rightarrow\mathbb R\) are continuous, and (a) \(|h(r)|\leq\text{const}\cdot r^\beta\), \(\beta<-2\); (b) \(g(0)\neq 0\); (c) \(\varlimsup_{|v|\to\infty}|g(v)|/|v|< C\), where \(C\) is an explicitly defined constant; or (\(\text{c}'\)) \(g(v)v< 0\) at large \(|v|\). Reviewer: Serghey G.Suvorov (Donetsk) Cited in 7 Documents MSC: 35J65 Nonlinear boundary value problems for linear elliptic equations 34B15 Nonlinear boundary value problems for ordinary differential equations 45G10 Other nonlinear integral equations 34B27 Green’s functions for ordinary differential equations Keywords:semilinear elliptic equations; exterior domain; Green function PDFBibTeX XMLCite \textit{R. Stańczy}, Topol. Methods Nonlinear Anal. 14, No. 2, 363--370 (1999; Zbl 0956.35049) Full Text: DOI