×

Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents. (English) Zbl 0956.35056

There are obtained results about existence and multiplicity of solutions of the following Dirichlet problem: \[ -\Delta_p u=\sum^n_{i=1} \frac{\partial}{\partial x_i} \left(|\nabla u|^{p-2} u_{x_i}\right)= \lambda |u|^{r-2}u + \mu \frac{|u|^{q-2}u}{|x|^s} \quad\text{in} \Omega,\qquad u\big|_{\partial\Omega}=0. \] where \(\lambda, \mu\) are two positive parameters and \(\Omega\) is \(a\) smooth bounded domain in \(\mathbb{R}^n\) containing 0 in its interior. The parameters \(p,q,r,s,n\) satisfy the following natural conditions: \[ 1<p<n,\;p\leq q\leq p^\ast(s)\equiv \frac{n-s}{n-p}p,\quad p\leq r\leq p^\ast=p^\ast(0)=\frac{np}{n-p} \] which are necessary for an application of the variational approach.

MSC:

35J70 Degenerate elliptic equations
47J30 Variational methods involving nonlinear operators
58E30 Variational principles in infinite-dimensional spaces
Full Text: DOI

References:

[1] Thierry Aubin, Nonlinear analysis on manifolds. Monge-Ampère equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 252, Springer-Verlag, New York, 1982. · Zbl 0512.53044
[2] G. Bliss: An Integral Inequality, J. London Math. Soc., 5 (1930) 40-46. · JFM 56.0434.02
[3] Lucio Boccardo and François Murat, Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear Anal. 19 (1992), no. 6, 581 – 597. · Zbl 0783.35020 · doi:10.1016/0362-546X(92)90023-8
[4] Zdena Riečanová, About \?-additive and \?-maxitive measures, Math. Slovaca 32 (1982), no. 4, 389 – 395 (English, with Russian summary). · Zbl 0507.28004
[5] Haïm Brézis and Louis Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), no. 4, 437 – 477. · Zbl 0541.35029 · doi:10.1002/cpa.3160360405
[6] H. Brezis and L. Nirenberg: A Minimization Problem with Critical Exponent and Non-zero Data, in ”Symmetry in Nature”, Scuola Norm. Sup. Pisa (1989), 129-140.
[7] Luis A. Caffarelli, Basilis Gidas, and Joel Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42 (1989), no. 3, 271 – 297. · Zbl 0702.35085 · doi:10.1002/cpa.3160420304
[8] L. Caffarelli, R. Kohn, and L. Nirenberg, First order interpolation inequalities with weights, Compositio Math. 53 (1984), no. 3, 259 – 275. · Zbl 0563.46024
[9] G. Cerami, S. Solimini, and M. Struwe, Some existence results for superlinear elliptic boundary value problems involving critical exponents, J. Funct. Anal. 69 (1986), no. 3, 289 – 306. · Zbl 0614.35035 · doi:10.1016/0022-1236(86)90094-7
[10] Kai Seng Chou and Chiu Wing Chu, On the best constant for a weighted Sobolev-Hardy inequality, J. London Math. Soc. (2) 48 (1993), no. 1, 137 – 151. · Zbl 0739.26013 · doi:10.1112/jlms/s2-48.1.137
[11] P. Drábek, Strongly nonlinear degenerated and singular elliptic problems, Nonlinear partial differential equations (Fès, 1994) Pitman Res. Notes Math. Ser., vol. 343, Longman, Harlow, 1996, pp. 112 – 146. · Zbl 0853.35087
[12] Pavel Drábek and Stanislav I. Pohozaev, Positive solutions for the \?-Laplacian: application of the fibering method, Proc. Roy. Soc. Edinburgh Sect. A 127 (1997), no. 4, 703 – 726. · Zbl 0880.35045 · doi:10.1017/S0308210500023787
[13] J. P. García Azorero and I. Peral Alonso, Hardy inequalities and some critical elliptic and parabolic problems, J. Differential Equations 144 (1998), no. 2, 441 – 476. · Zbl 0918.35052 · doi:10.1006/jdeq.1997.3375
[14] I. Sh. Mogilevskiĭ and V. A. Solonnikov, The problem of the steady motion of a second-grade fluid in Hölder classes of functions, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 243 (1997), no. Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funktsiĭ. 28, 154 – 168, 341 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (New York) 99 (2000), no. 1, 898 – 906. · Zbl 0906.35075 · doi:10.1007/BF02673598
[15] J. García Azorero and I. Peral Alonso, Some results about the existence of a second positive solution in a quasilinear critical problem, Indiana Univ. Math. J. 43 (1994), no. 3, 941 – 957. · Zbl 0822.35048 · doi:10.1512/iumj.1994.43.43041
[16] J. P. García Azorero and I. Peral Alonso, Existence and nonuniqueness for the \?-Laplacian: nonlinear eigenvalues, Comm. Partial Differential Equations 12 (1987), no. 12, 1389 – 1430. · Zbl 0637.35069 · doi:10.1080/03605308708820534
[17] Nassif Ghoussoub, Duality and perturbation methods in critical point theory, Cambridge Tracts in Mathematics, vol. 107, Cambridge University Press, Cambridge, 1993. With appendices by David Robinson. · Zbl 0790.58002
[18] David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. · Zbl 0562.35001
[19] Mohammed Guedda and Laurent Véron, Local and global properties of solutions of quasilinear elliptic equations, J. Differential Equations 76 (1988), no. 1, 159 – 189. · Zbl 0661.35029 · doi:10.1016/0022-0396(88)90068-X
[20] Mohammed Guedda and Laurent Véron, Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal. 13 (1989), no. 8, 879 – 902. · Zbl 0714.35032 · doi:10.1016/0362-546X(89)90020-5
[21] Elliott H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. (2) 118 (1983), no. 2, 349 – 374. · Zbl 0527.42011 · doi:10.2307/2007032
[22] Elliott H. Lieb and Michael Loss, Analysis, Graduate Studies in Mathematics, vol. 14, American Mathematical Society, Providence, RI, 1997. · Zbl 0873.26002
[23] Mitsuharu &Ocirc;tani, Existence and nonexistence of nontrivial solutions of some nonlinear degenerate elliptic equations, J. Funct. Anal. 76 (1988), no. 1, 140 – 159. · Zbl 0662.35047 · doi:10.1016/0022-1236(88)90053-5
[24] Ezzat S. Noussair, Charles A. Swanson, and Jian Fu Yang, Quasilinear elliptic problems with critical exponents, Nonlinear Anal. 20 (1993), no. 3, 285 – 301. · Zbl 0785.35042 · doi:10.1016/0362-546X(93)90164-N
[25] I. Peral: Multiplicity of Solutions for the p-Laplacian, Lecture Notes at the Second School on Nonlinear Functional Analysis and Applications to Differential Equations at ICTP of Trieste (April 21 - May 9, 1997).
[26] Michael Struwe, Variational methods, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 34, Springer-Verlag, Berlin, 1996. Applications to nonlinear partial differential equations and Hamiltonian systems. · Zbl 0864.49001
[27] Giorgio Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4) 110 (1976), 353 – 372. · Zbl 0353.46018 · doi:10.1007/BF02418013
[28] Gabriella Tarantello, Nodal solutions of semilinear elliptic equations with critical exponent, Differential Integral Equations 5 (1992), no. 1, 25 – 42. · Zbl 0758.35035
[29] Peter Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984), no. 1, 126 – 150. · Zbl 0488.35017 · doi:10.1016/0022-0396(84)90105-0
[30] Jian Fu Yang, Positive solutions of quasilinear elliptic obstacle problems with critical exponents, Nonlinear Anal. 25 (1995), no. 12, 1283 – 1306. · Zbl 0838.49008 · doi:10.1016/0362-546X(94)00247-F
[31] C. Yuan: On Non-homogeneous Quasi-linear PDEs Involving the p-Laplacian and the Critical Sobolev Exponent, Ph.D. Dissertation, UBC 1998.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.