Hieber, Matthias; Prüss, Jan Functional calculi for linear operators in vector-valued \(L^p\)-spaces via the transference principle. (English) Zbl 0956.47008 Adv. Differ. Equ. 3, No. 6, 847-872 (1998). Via transference principle due to Coifman and Weiss the authors investigate the \(H^\infty\)-calculi for linear operators in vector-valued spaces \(X=L^p(\Omega,\mu,Y)\), \(1<p<\infty\), where \((\Omega,\mu)\) is a measure space and \(Y\) is a Banach space of class \({\mathcal HT}\). Reviewer: N.Bozhinov (Sofia) Cited in 27 Documents MSC: 47A60 Functional calculus for linear operators 35J25 Boundary value problems for second-order elliptic equations 35J40 Boundary value problems for higher-order elliptic equations 42B15 Multipliers for harmonic analysis in several variables Keywords:functional calculus; transference principle PDF BibTeX XML Cite \textit{M. Hieber} and \textit{J. Prüss}, Adv. Differ. Equ. 3, No. 6, 847--872 (1998; Zbl 0956.47008) OpenURL