zbMATH — the first resource for mathematics

Particle representations for measure-valued population models. (English) Zbl 0956.60081
The authors consider two continuous time models for the evolution of a finite population in which a type or location, represented by a point in a metric space \(E\), is associated with each individual. The chances of an individual replicating or dying do not depend on its type. In one model, the population is ordered by decreasing age and in the other, this order does not play a role. Measure-valued processes [see D. A. Dawson, in: Ecole d’Été de probabilités de Saint Flour XXI-1991. Lect. Notes Math. 1541, 1-260 (1993; 799.60080)] are obtained as infinite population limits for a large class of population models, and it is shown that these measure-valued processes can be represented in terms of the total mass of the population. The construction gives an explicit connection between genealogical and diffusion models in population genetics. The class of measure-valued models covered includes both Fleming-Viot and Dawson-Watanabe processes. The particle model gives a simple representation of D. Dawson’s and E. A. Perkins’s historical process [Mem. Am. Math. Soc. 454 (1991; Zbl 0754.60062)]. E. Perkins’ historical stochastic integral [Probab. Theory Relat. Fields 94, No. 2, 189-245 (1992; Zbl 0767.60044)] can be obtained in terms of classical semimartingale integration. A number of applications to new and known results on conditioning, uniqueness and limiting behaviour are described.

60J60 Diffusion processes
60J80 Branching processes (Galton-Watson, birth-and-death, etc.)
60G52 Stable stochastic processes
Full Text: DOI
[1] AVRAM, F. 1988. Weak convergence of the variations, iterated integrals, and Doleans Dade éxponentials of sequences of semimartingales. Ann. Probab. 16 246 250. · Zbl 0636.60029
[2] BHATT, A. G. and KARANDIKAR, R. L. 1993. Invariant measures and evolution equations for Markov processes characterized via martingale problems. Ann. Probab. 21 2246 2268. · Zbl 0790.60062
[3] BLACKWELL, D. and DUBINS, L. E. 1983. An extension of Skorohod’s almost sure representation theorem. Proc. Amer. Math. Soc. 89 691 692. · Zbl 0542.60005
[4] DAWSON, D. A. 1993. Measure-valued Markov processes. Ecole d’Ete de Probabilites de Saint\' \' Flour XXI. Lecture Notes in Math. 1541. Springer, Berlin.Z. · Zbl 0799.60080
[5] DAWSON, D. A. and PERKINS, E. A. 1991. Historical processes. Mem. Amer. Math. Soc. 93 454. · Zbl 0754.60062
[6] DONNELLY, P. and KURTZ, T. G. 1996. A countable representation of the Fleming Viot measure-valued diffusion. Ann. Probab. 24 698 742. · Zbl 0869.60074
[7] DYNKIN, E. B. 1965. Markov Processes I. Springer, Berlin. · Zbl 0132.37901
[8] EL KAROUI, N. and ROELLY, S. 1991. Proprietes de martingales, explosion et representation de Levy Khinchine d’une classe du processus de branchement a valeurs mesures. Śtochastic Process. Appl. 38 239 266. · Zbl 0743.60081
[9] ETHERIDGE, A. and MARCH, P. 1991. A note on superprocesses. Probab. Theory Related Fields 89 141 147. · Zbl 0722.60076
[10] ETHIER, S. N. and KURTZ, T. G. 1986. Markov Processes: Characterization and Convergence. Wiley, New York. · Zbl 0592.60049
[11] ETHIER, S. N. and KURTZ, T. G. 1993. Fleming Viot processes in population genetics. SIAM J. Control Optim. 31 345 386. · Zbl 0774.60045
[12] EVANS, S. N. 1993. Two representations of a conditioned superprocess. Proc. Roy. Soc. Edinburgh Sect. A 123 959 971. · Zbl 0784.60052
[13] EVANS, S. N. and PERKINS, E. 1990. Measure-valued Markov branching processes conditioned on non-extinction. Israel J. Math. 71 329 337. · Zbl 0717.60099
[14] KINGMAN, J. F. C. 1982. The coalescent. Stochastic Process. Appl. 13 235 248. · Zbl 0491.60076
[15] KURTZ, T. G. 1998. Martingale problems for conditional distributions of Markov processes. Elec. J. Probab. 3. · Zbl 0907.60065
[16] KURTZ, T. G. and PROTTER, P. 1991. Weak limit theorems for stochastic integrals and stochastic differential equations. Ann. Probab. 19 1035 1070. · Zbl 0742.60053
[17] LOEVE, M. 1963. Probability Theory, 3rd ed. Van Nostrand, Princeton. · Zbl 0108.14202
[18] PERKINS, E. A. 1991. Conditional Dawson Watanabe processes and Fleming Viot processes. In Seminar on Stochastic Processes 142 155. Birkhauser, Boston. \" · Zbl 0763.60026
[19] PERKINS, E. A. 1992. Measure-valued branching diffusion with spatial interactions. Probab. Theory Related Fields 94 189 245. · Zbl 0767.60044
[20] PERKINS, E. A. 1995. On the martingale problem for interactive measure-valued branching diffusions. Mem. Amer. Math. Soc. 115 1 89. · Zbl 0823.60071
[21] PITMAN, J. 1997. Coalescents with multiple collisions. · Zbl 0963.60079
[22] TRIBE, R. 1992. The behavior of superprocesses near extinction. Ann. Probab. 20 286 311. · Zbl 0749.60046
[23] UNITED KINGDOM MADISON, WISCONSIN 53706-1388 E-MAIL: donnelly@stats.ox.ac.uk E-MAIL: kurtz@math.wisc.edu
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.