zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Mimetic discretizations for Maxwell’s equations. (English) Zbl 0956.78015
Summary: The authors have constructed reliable finite difference methods for approximating the solution to Maxwell’s equations using accurate discrete analogs of differential operators that satisfy the identities and theorems of vector and tensor calculus in discrete form. The numerical approximation does not have spurious modes and mimics many fundamental properties of the underlying physical problem including conservation laws, symmetries in the solution, and the nondivergence of particular vector fields. Numerical examples demonstrate the high quality of the method when the medium is strongly discontinuous and for nonorthogonal, nonsmooth computational grids.

MSC:
78M20Finite difference methods (optics)
78A25General electromagnetic theory
WorldCat.org
Full Text: DOI
References:
[1] Adam, A. C.; Serveniere, A. G.; Nedelec, J. C.; Raviart, P. A.: Study of an implicit scheme for integrating Maxwell’s equations. Comput. methods appl. Mech. eng. 22, 327 (1980) · Zbl 0433.73067
[2] Ardelyan, N. V.: The convergence of difference schemes for two-dimensional equations of acoustics and Maxwell’s equations. USSR comput. Math. math. Phys. 23, 93 (1983) · Zbl 0571.65107
[3] Bossavit, A.: Computational electromagnetism: variational formulations, complementarity, edge elements. (1998) · Zbl 0945.78001
[4] Cai, Z.; Jones, J. E.; Mccormick, S. F.; Russell, T. F.: Control-volume mixed finite element methods. Comput. geosci. 1, 289 (1997) · Zbl 0941.76050
[5] Chew, W. C.: Electromagnetic theory on a lattice. J. appl. Phys. 75, 4843 (1994) · Zbl 0858.54011
[6] Denisov, A. A.; Koldoba, A. V.; Poveshchenko, Yu.A.: The convergence to generalized solutions of difference schemes of the reference-operator method for Poisson’s equation. USSR comput. Math. math. Phys. 29, 32 (1989) · Zbl 0702.65085
[7] M. V. Dmitrieva, A. A. Ivanov, V. F. Tishkin, A. P. Favorskii, Construction and investigation of support-operators finite-difference schemes for Maxwell equations in cylindrical geometry, Keldysh Inst. of Appl. Math. USSR Ac. of Sc. 27, 1985
[8] Girault, V.: Theory of a finite difference methods on irregular networks. SIAM J. Numer. anal. 11, 260 (1974) · Zbl 0296.65049
[9] Gustafsson, B.; Kreiss, H. -O.; Oliger, J.: Time dependent problems and difference methods. 445 (1995) · Zbl 0843.65061
[10] Hyman, J. M.; Shashkov, M.: Natural discretizations for the divergence, gradient, and curl on logically rectangular grids. Int. J. Comput. math. Appl. 33, 81 (1997) · Zbl 0868.65006
[11] Hyman, J. M.; Shashkov, M.: The adjoint operators for the natural discretizations for the divergence, gradient, and curl on logically rectangular grids. IMACS J. Appl. numer. Math. 25, 413 (1997) · Zbl 1005.65024
[12] Hyman, J. M.; Shashkov, M.: The orthogonal decomposition theorems for mimetic finite difference methods. SIAM J. Numer. anal. 36, 788 (1998) · Zbl 0972.65077
[13] Hyman, J. M.; Shashkov, M.: The approximation of boundary conditions for mimetic finite difference methods. Int. J. Comput. math. Appl. 36, 79 (1998) · Zbl 0932.65111
[14] J. M. Hyman, M. Shashkov, Mimetic Discretizations for Maxwell’s Equations and Equations of Magnetic Diffusion, (http://cnls.lanl.gov/ shashkov, Los Alamos, NM · Zbl 0949.78021
[15] Hyman, J. M.; Shashkov, M.; Steinberg, S.: The numerical solution of diffusion problems in strongly heterogeneous non-isotropic materials. J. comput. Phys. 132, 130 (1997) · Zbl 0881.65093
[16] Jiang, B.; Wu, J.; Pavinelli, L. A.: The origin of spurious solutions in computational electromagnetics. J. comput. Phys. 125, 104 (1996) · Zbl 0848.65086
[17] Jiang, B.: The least-squares finite element method: theory and applications in computational fluid dynamics and electromagnetics. 371 (1998)
[18] Jin, J.: The finite element method in electromagnetics. (1993) · Zbl 0823.65124
[19] Korshiya, T. K.; Tishkin, V. F.; Favorskii, A. P.; Shashkov, M. J.: Flow-variational difference schemes for calculating the diffusion of a magnetic field. Sov. phys. Dokl. 25, 832 (1980)
[20] Lee, R. L.; Madsen, N. K.: A mixed finite element formulation for Maxwell’s equations in the time domain. J. comput. Phys. 88, 284 (1990) · Zbl 0703.65082
[21] Maikov, A. R.; Sveshnikov, A. G.; Yakunin, S. A.: Mathematical modeling of a microwave plasma generator. USSR comput. Math. math. Phys. 25, 149 (1985)
[22] Mccartin, B. J.; Dicello, J. F.: Three dimensional finite difference frequency domain scattering computation using the control region approximation. IEEE trans. Magnetics 25, 3092 (1989)
[23] Monk, P.: A comparison of three mixed methods for the time-dependent Maxwell’s equations. SIAM J. Sci. stat. Comput. 13, 1097 (1992) · Zbl 0762.65081
[24] Monk, P.: Analysis of finite element method for Maxwell’s equations. SIAM J. Numer. anal. 29, 714 (1992) · Zbl 0761.65097
[25] Monk, P.: An analysis of nedelec’s method for the spatial discretization of Maxwell’s equations. J. comp. Appl. math. 47, 101 (1993) · Zbl 0784.65091
[26] Morel, J. E.; Roberts, R. M.; Shashkov, M.: A local support-operators diffusion discretization scheme for quadrilateral r-z meshes. J. comput. Phys. 144, 17 (1998)
[27] Nedelec, J. C.: Mixed finite elements inr3. Numer. math. 35, 315 (1980) · Zbl 0419.65069
[28] R. A. Nicolaides, A discrete vector field theory and some applications, Proceedings of IMACS’91--13th IMACS World Congress on Computation and Applied Mathematics, Trinity College, Dublin, Ireland, 1991, 120 · Zbl 0744.65089
[29] Nicolaides, R. A.; Wu, X.: Covolume solutions of three dimensional DIV-CURL equations. SIAM J. Numer. anal. 34, 2195 (1997) · Zbl 0889.35006
[30] Nicolaides, R. A.; Wang, D. -Q.: Convergence analysis of covolume scheme for Maxwell’s equations in three dimensions. Math. comput. 67, 946 (1998) · Zbl 0907.65116
[31] Raviart, P. A.; Thomas, J. M.: A mixed finite element method for 2-nd order elliptic problems. Mathematical aspects of finite element methods, 20 (1977) · Zbl 0362.65089
[32] Reitz, J. R.; Milford, F. J.; Christy, R. W.: Foundations of electromagnetic theory. (1980) · Zbl 0124.44506
[33] Samarskii, A. A.; Tishkin, V. F.; Favorskii, A. P.; Shashkov, M. Yu.: Operational finite-difference schemes. Differential equations 17, 854 (1981)
[34] Schuhmann, R.; Weiland, T.: Stability of the FDTD algorithm on nonorthogonal grids related to the spatial interpolation scheme. IEEE trans. Magnetics 34, 2751 (1998) · Zbl 0926.65092
[35] Shashkov, M.: Conservative finite-difference schemes on general grids. (1995)
[36] Shashkov, M.: Violation of conservation laws when solving difference equations by the iteration methods. U.S.S.R. comput. Math. math. Phys. 22, 131 (1982) · Zbl 0529.65062
[37] M. Shashkov, A. Solov’ov, Finite-difference schemes for solution of heat equation on Dirichlet grid, preprint, All Union Center for Mathematical Modeling, U.S.S.R. Academy of Sciences, 27, 1991
[38] Shashkov, M.; Steinberg, S.: Support-operator finite-difference algorithms for general elliptic problems. J. comput. Phys. 118, 131 (1995) · Zbl 0824.65101
[39] Shashkov, M.; Steinberg, S.: Solving diffusion equations with rough coefficients in rough grids. J. comput. Phys. 129, 383 (1996) · Zbl 0874.65062
[40] Finite Elements for Wave Electromagnetics: Methods and Techniques, P. P. SilvesterG. Pelosi, IEEE Press, New York, 1994
[41] Shercliff, J. A.: A textbook of magnetohydrodynamics. 24 (1965) · Zbl 0134.22101
[42] Taflove, A.: Computational electrodynamics: the finite-difference time-domain method. (1995) · Zbl 0840.65126
[43] Weiland, T.: Time domain electromagnetic field computation with finite difference methods. Int. J. Numer. model. 9, 295 (1996)
[44] Yee, K. S.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE trans. Antennas propag. 14, 302 (1966) · Zbl 1155.78304