×

zbMATH — the first resource for mathematics

Phase transitions for \(\phi_2^4\) quantum fields. (English) Zbl 0956.82501
The authors prove the existence of a phase transition for the quantum field interaction \(\lambda\phi^4+m_0{}^2\phi^2\) in two-dimensional space-time. Technically the following two results (along with a related estimate) are shown to hold for sufficiently large \(\lambda\): (1) Let \(\Delta_j\) be a unit square lattice with center at \(j\in{Z}^2\), let \(\phi(\Delta)\) denote a smeared out field \(\int_\Delta\phi(x) dx\), let \(\chi_\pm\) be the characteristic functions for the half-lines \((0,+\infty)\) and \((-\infty,0)\), respectively, and let \(\chi_\pm(\Delta_j)\) denote \(\chi_\pm(\phi(\Delta_j))\). Then \(|\langle\chi_+(\Delta_i)\chi_-(\Delta_j)\rangle-\langle\chi_+(\Delta_i)\rangle\langle\chi_-(\Delta_j)\rangle|>a>0\), which shows the existence of long-range (large \(i-j\)) correlation. (2) If a linear term \(-\mu\phi\) is added to the interaction and the limit \(\mu\rightarrow+0\) is taken, then \(\langle\chi_+(\Delta)\rangle_\mu\) has a limit greater than \({\textstyle\frac 1{2}}+\surd a\), showing asymmetry under the transformation \(\phi\rightarrow-\phi\).
Reviewer: H.Araki (Kyoto)

MSC:
82B10 Quantum equilibrium statistical mechanics (general)
82B26 Phase transitions (general) in equilibrium statistical mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Dobrushyn, R., Minlos, R.: Construction of a one-dimensional quantum field via a continuous Markov field. Funct. Anal. Appl.7, 324–325 (1973) · Zbl 0294.60081 · doi:10.1007/BF01075740
[2] Fröhlich, J.: Schwinger functions and their generating functionals. II. Adv. Math. (to appear) · Zbl 0345.46057
[3] Glimm, J., Jaffe, A.: The \(\lambda\)(\(\phi\)4)2 quantum field theory without cutoffs. IV. J. Math. Phys.13, 1558–1584 (1972). · doi:10.1063/1.1665879
[4] Glimm, J., Jaffe, A.: On the approach to the critical point. Ann. Inst. Henri Poincaré22, 13–26 (1975)
[5] Glimm, J., Jaffe, A.: \(\phi\) j bounds inP(\(\phi\))2 quantum field models. Proc. of the Colloq. on Math. Methods of Quantum Field Theory, Marseille, June 1975
[6] Glimm, J., Jaffe, A.: Two and three body equations in quantum field models. Commun. math. Phys.44, 293–320 (1975) · doi:10.1007/BF01609832
[7] Glimm, J., Jaffe, A., Spencer, T.: A cluster expansion for the \(\phi\) 2 4 quantum field theory in the two phase region (in preparation)
[8] Guerra, F., Rosen, L., Simon, B.: Nelson’s symmetry and the infinite volume behavior of the vacuum inP(\(\phi\))2. Commun. math. Phys.27, 10–22 (1972) · doi:10.1007/BF01649655
[9] Guerra, F., Rosen, L., Simon, B.: The vacuum energy forP(\(\phi\))2 infinite volume limit and coupling constant dependence. Commun. math. Phys.29, 233–247 (1973) · doi:10.1007/BF01645249
[10] Guerra, F., Rosen, L., Simon, B.: TheP(\(\phi\))2 Euclidean quantum field theory as classical statistical mechanics. Ann. Math.101, 111–259 (1975) · doi:10.2307/1970988
[11] Pirogov, S. A., Sinai, Ya. G.: Phase transitions of the first kind for small perturbations of the Ising model. Funct. Anal. Appl.8, 21–25 (1974) (Engl. trans.) · doi:10.1007/BF02028303
[12] Simon, B., Griffiths, R.: The \(\phi\) 2 4 field theory as a classical Ising model. Commun. math. Phys.33, 145–164 (1973) · doi:10.1007/BF01645626
[13] Glimm, J., Jaffe, A., Spencer, T.: Existence of phase transitions for \(\phi\) 2 4 quantum fields. Proc. of the Colloq. on Math. Methods of Quantum Field Theory, Marseille, June 1975 · Zbl 0956.82501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.