×

Convergence preserving permutations of \(\mathbb{N}\) and Fréchet’s space of permutations of \(\mathbb{N}\). (English) Zbl 0957.40001

The paper deals with the metric space of all permutations of positive integers, equipped with the Fréchet metric. From the topological point of view the authors investigate in this metric space various sets of these permutations which preserve the convergence of infinite series.

MSC:

40A05 Convergence and divergence of series and sequences
54A10 Several topologies on one set (change of topology, comparison of topologies, lattices of topologies)
PDFBibTeX XMLCite
Full Text: EuDML

References:

[1] AGNEW R. P.: On rearrangements of series. Bull. Amer. Math. Soc. 46 (1940), 797-799. · Zbl 0024.25902 · doi:10.1090/S0002-9904-1940-07305-7
[2] AGNEW R. P.: Permutations preserving convergence of series. Proc. Amer. Math. Soc. 6 (1995), 563-564. · Zbl 0067.28601 · doi:10.2307/2033430
[3] HOZO I.-MILLER H. I.: On Rieman’s theorem about conditionally convergent series. Mat. Vesnik 38 (1986), 279-283. · Zbl 0664.40004
[4] KNIPERS L.-NIEDERREITER H.: Uniform Distribution of Sequences. John Wiley, New York-London-Sydney-Toronto, 1974.
[5] KURATOWSKI, C: Topologie I. PWN, Warszava, 1958. · Zbl 0078.14603
[6] LÁSZLÓ V.-ŠALÁT T.: Uniformly distributed sequences of positive integers in Baire’s space. Math. Slovaca 41 (1991), 277-281. · Zbl 0757.11023
[7] LEVI F. W.: Rearrangements of convergent series. Duke Math. J. 13 (1946), 579-585. · Zbl 0060.15405 · doi:10.1215/S0012-7094-46-01348-8
[8] PÁL L.: On a problem of theory of series. Mat. Lapok 12 (1961), 38-43.
[9] PLEASANTS P. A. B.: Rearrangements that preserve convergence. J. London Math. Soc. (2) 15 (1977), 134-142. · Zbl 0344.40001 · doi:10.1112/jlms/s2-15.1.134
[10] ŠALÁT T.: Baire’s space of permutations of N and rearrangements of series. · Zbl 1007.54032
[11] SENGUPTA H. M.: On rearrangements of series. Proc. Amer. Math. Soc. 1 (1950), 71-75. · Zbl 0038.21102 · doi:10.2307/2032436
[12] SENGUPTA H. M.: Rearrangements of series. Proc. Amer. Math. Soc. 7 (1956), 347-350. · Zbl 0074.04404 · doi:10.2307/2032738
[13] SCHAEFER P.: Sum-preserving rearrangements of infinite series. Amer. Math. Monthly 88 (1981), 33-40. · Zbl 0455.40007 · doi:10.2307/2320709
[14] STOUT Q. F.: On Levi’s duality between permutations and convergent series. J. London Math. Soc. (2) 34 (1986), 67-80. · Zbl 0633.40004 · doi:10.1112/jlms/s2-34.1.67
[15] TKADLEC J.: Construction of some non-a-porous sets of real line. Real. Anal. Exchange 9 (1983-84), 473-482.
[16] ZAJÍČEK L.: Sets of \(\sigma\)-porosity and sets of \(\sigma\)-porosity \((q)\). Časopis Pěst. Mat. 101 (1976), 350-359. · Zbl 0341.30026
[17] ZAJICEK L.: Porosity and \(\sigma\)-porosity. Real Anal. Exchange 13 (1987-88), 314-350. · Zbl 0666.26003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.