Lopuhaä, Hendrik P. Asymptotics of reweighted estimators of multivariate location and scatter. (English) Zbl 0957.62017 Ann. Stat. 27, No. 5, 1638-1665 (1999). Summary: We investigate the asymptotic behavior of a weighted sample mean and covariance, where the weights are determined by the Mahalanobis distances with respect to initial robust estimators. We derive an explicit expansion for the weighted estimators. From this expansion it can be seen that reweighting does not improve the rate of convergence of the initial estimators. We also show that if one uses smooth \(S\)-estimators to determine the weights, the weighted estimators are asymptotically normal. Finally, we will compare the efficiency and local robustness of the reweighted \(S\)-estimators with two other improvements of \(S\)-estimators: \(\tau\)-estimators and constrained \(M\)-estimators. Cited in 38 Documents MSC: 62F12 Asymptotic properties of parametric estimators 62H12 Estimation in multivariate analysis 62E20 Asymptotic distribution theory in statistics 62F35 Robustness and adaptive procedures (parametric inference) 62H10 Multivariate distribution of statistics Keywords:location; reweighted least squares; empirical processes; weighted sample mean; covariance; robust estimators × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Bickel, P. J. (1975). One-step Huber estimates in the linear model. J.Amer.Statist.Assoc.70 428-434. JSTOR: · Zbl 0322.62038 · doi:10.2307/2285834 [2] Davies, P. L. (1987). Asymptotic behavior of S-estimates ofmultivariate location parameters and dispersion matrices. Ann.Statist.15 1269-1292. Davies, P. L. (1992a). The asymptotics ofRousseeuw’s minimum volume ellipsoid estimator. Ann. Statist. 20 1828-1843. Davies, P. L. (1992b). An efficient Fréchet differentiable high breakdown multivariate location and dispersion estimator. J.Multivariate Anal.40 311-327. [3] Dieudonné, J. (1969). Foundations of Modern Analysis. Academic Press, New York. · Zbl 0176.00502 [4] Donoho, D. L. (1982). Breakdown properties ofmultivariate location estimators. Ph.D. qualifying paper, Harvard Univ. [5] Donoho, D. L. and Huber, P. J. (1983). The notion ofbreakdown point. In A Festschrift for Erich L.Lehmann (P. J. Bickel, K. A. Doksum, J. L. Hodges, Jr., eds.) 157-184. Wadsworth, Belmont, CA. · Zbl 0523.62032 [6] Gr übel, R. (1988). A minimal characterization ofthe covariance matrix. Metrika 35 49-52. · Zbl 0638.62046 · doi:10.1007/BF02613285 [7] Hampel, F. R. (1968). Contributions to the theory ofrobust estimation. Ph.D. dissertation, Univ. California, Berkeley. [8] Hampel, F. R. (1974). The influence curve and its role in robust estimation, J.Amer.Statist.Assoc. 69 383-393. JSTOR: · Zbl 0305.62031 · doi:10.2307/2285666 [9] He, X. and Portnoy, S. (1992). Reweighted estimators converge at the same rate as the initial estimator. Ann.Statist.20 2161-2167. · Zbl 0764.62043 · doi:10.1214/aos/1176348910 [10] Jolion, J., Meer, P. and Bataouche, S. (1991). Robust clustering with applications in computer vision. IEEE Trans.Pattern Anal.Machine Intelligence 17 791-802. [11] Kent, J. T. and Tyler, D. E. (1997). Constrained M-estimation for multivariate location and scatter. Ann.Statist.24 1346-1370. · Zbl 0862.62048 · doi:10.1214/aos/1032526973 [12] Kim, J. and Pollard, D. (1990). Cube root asymptotics. Ann.Statist.18 191-219. · Zbl 0703.62063 · doi:10.1214/aos/1176347498 [13] Lopuhaä, H. P. (1989). On the relation between S-estimators and M-estimators ofmultivariate location and covariance. Ann.Statist.17 1662-1683. · Zbl 0702.62031 · doi:10.1214/aos/1176347386 [14] Lopuhaä, H. P. (1991). Multivariate -estimators for location and scatter. Canad.J.Statist.19 307-321. JSTOR: · Zbl 0746.62034 · doi:10.2307/3315396 [15] Lopuhaä, H. P. (1997). Asymptotic expansion of S-estimators oflocation and covariance. Statist. Neerlandica 51 220-237. · Zbl 0896.62051 · doi:10.1111/1467-9574.00051 [16] Lopuhaä, H. P. and Rousseeuw, P. J. (1991). Breakdown properties ofaffine equivariant estimators ofmultivariate location and covariance matrices. Ann.Statist.19 229-248. · Zbl 0733.62058 · doi:10.1214/aos/1176347978 [17] Maronna, R. A. (1976). Robust M-estimators ofmultivariate location and scatter. Ann.Statist.4 51-67. · Zbl 0322.62054 · doi:10.1214/aos/1176343347 [18] Maronna, R. A. and Yohai, V. J. (1995). The behavior ofthe Stahel-Donoho robust multivariate estimator. J.Amer.Statist.Assoc.90 330-341. JSTOR: · Zbl 0820.62050 · doi:10.2307/2291158 [19] Matei, B., Meer, P. and Tyler, D. (1998). Performance assessment by resampling: rigid motion estimators. In Empirical Evaluation Methods in Computer Vision (K. W. Bowyer, P. J. Philips, eds.) 72-95. IEEE CS Press, Los Alamitos, California. [20] Meer, P., Mintz, D., Rosenfeld, A. and Kim, D. Y. (1991). Robust regression methods for computer vision: a review. Internat.J.Comput.Vision 6 59-70. [21] Pollard, D. (1984). Convergence of Stochastic Processes. Springer, New York. · Zbl 0544.60045 [22] Rousseeuw, P. J. (1985). Multivariate estimation with high breakdown point. In Mathematical Statistics and Applications B (W. Grossmann, G. Pflug, I. Vincze and W. Wertz, eds.) 283-297. Reidel, Dordrecht. · Zbl 0609.62054 [23] Rousseeuw, P. J. and Leroy, A. M. (1987). Robust Regression and Outlier Detection. Wiley, New York. · Zbl 0711.62030 [24] Stahel, W. A. (1981). Robust estimation: infinitesimal optimality and covariance matrix estimators. Ph.D. thesis (in German). ETH, Zurich. [25] Tyler, D. E. (1986). Breakdown properties ofthe M-estimators ofmultivariate scatter. Technical report, Dept. Statistics, Rutgers Univ. [26] Yohai, V. J. (1987). High breakdown point and high efficiency robust estimates for regression. Ann.Statist.15 642-656. · Zbl 0624.62037 · doi:10.1214/aos/1176350366 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.