×

Strong consistency of maximum quasi-likelihood estimators in generalized linear models with fixed and adaptive designs. (English) Zbl 0957.62056

Summary: Strong consistency for maximum quasi-likelihood estimators of regression parameters in generalized linear regression models is studied. Results parallel to the elegant work of Lai, Robbins and Wei and Lai and Wei on least squares estimation under both fixed and adaptive designs are obtained. Let \(y_1, \dots, y_n\) and \(x_1, \dots, x_n\) be the observed responses and their corresponding design points \((p\times 1\) vectors), respectively. For fixed designs, it is shown that if the minimum eigenvalue of \(\sum x_ix_i'\) goes to infinity, then the maximum quasi-likelihood estimator for the regression parameter vector is strongly consistent. For adaptive designs, it is shown that a sufficient condition for strong consistency to hold is that the ratio of the minimum eigenvalue of \(\sum x_ix_i'\) to the logarithm of the maximum eigenvalues goes to infinity. Use of the results for the adaptive design case in quantal response experiments is also discussed.

MSC:

62J12 Generalized linear models (logistic models)
62F12 Asymptotic properties of parametric estimators
62J05 Linear regression; mixed models
Full Text: DOI

References:

[1] ANDERSEN, E. B. 1980. Discrete Statistical Models with Social Science Applications. NorthHolland, Amsterdam. Z. · Zbl 0423.62001
[2] ANDERSON, T. W. and TAYLOR, J. B. 1979. Strong consistency of least squares estimates in dynamic models. Ann. Statist. 7 484 489. · Zbl 0407.62040 · doi:10.1214/aos/1176344670
[3] ASTROM, K. L. and WITTENMARK, B. 1973. On self-tuning regulators. Automatica 9 185 199. Z. · Zbl 0249.93049
[4] BOX, G. E. P. and JENKINS, G. 1970. Time Series Analysis, Forecasting and Control. Holden-Day, San Francisco. Z. · Zbl 0249.62009
[5] CHOW, Y. S. and TEICHER, H. 1988. Probability Theory, 2nd ed. Springer, New York.
[6] COCHRAN, W. G. and DAVIS, M. 1965. The Robbins Monro method for estimating the median lethal dose. J. Roy. Statist. Soc. Ser. B 27 28 44. Z.
[7] DIXON, W. J. and MOOD, A. M. 1948. A method for obtaining and analyzing sensitivity data. J. Amer. Statist. Assoc. 43 109 127. Z. · Zbl 0030.20702 · doi:10.2307/2280071
[8] DUGUNDJI, J. 1966. Topology. Allyn and Bacon, Boston. Z. · Zbl 0144.21501
[9] FAHRMEIR, L. and KAUFMANN 1985. Consistency and asymptotic normality of the maximum likelihood estimator in generalized linear models. Ann. Statist. 13 342 368. Z. · Zbl 0594.62058 · doi:10.1214/aos/1176346597
[10] FINNEY, D. J. 1978. Statistical Methods in Biological Assay. Griffin, London. Z. · Zbl 0397.62083
[11] HABERMAN, S. J. 1977. Maximum likelihood estimates in exponential response models. Ann. Statist. 5 815 841. Z. · Zbl 0368.62019 · doi:10.1214/aos/1176343941
[12] LAI, T. L. and ROBBINS, H. 1979. Adaptive design and stochastic approximation. Ann. Statist. 7 1196 1221. Z. · Zbl 0426.62059 · doi:10.1214/aos/1176344840
[13] LAI, T. L., ROBBINS, H. and WEI, C. Z. 1979. Strong consistency of least squares estimates in multiple regression II. J. Multivariate Anal. 9 343 361. Z. · Zbl 0416.62051 · doi:10.1016/0047-259X(79)90093-9
[14] LAI, T. L. and WEI, C. Z. 1982. Least squares estimates in stochastic regression models with applications to identification and control of dynamic systems. Ann. Statist. 10 154 166. Z. · Zbl 0649.62060 · doi:10.1214/aos/1176345697
[15] LIANG, K.-Y. and ZEGER, S. L. 1986. Longitudinal data analysis using generalized linear models. Biometrika 73 13 22. Z. JSTOR: · Zbl 0595.62110 · doi:10.1093/biomet/73.1.13
[16] LORD, M. F. 1971a. Tailored testing, an application of stochastic approximation. J. Amer. Statist. Assoc. 66 707 711. Z. · Zbl 0257.62049 · doi:10.2307/2284216
[17] LORD, M. F. 1971b. Robbins Monro procedures for tailored testing. Educational and Psychological Measurement 31 3 31.Z.
[18] MCCULLAGH, P. and NELDER, J. A. 1989. Generalized Linear Models, 2nd ed. Chapman and Hall, London. Z. · Zbl 0744.62098
[19] MOORE, J. B. 1978. On strong consistency of least squares identification algorithms. Automatica 14 505 509. Z. · Zbl 0398.93056 · doi:10.1016/0005-1098(78)90010-9
[20] NELDER, J. A. and WEDDERBURN, R. W. M. 1972. Generalized linear models. J. Roy. Statist. Soc. Ser. A 135 370 384. Z.
[21] NORDBERG, L. 1980. Asymptotic normality of maximum likelihood estimators based on independent, unequally distributed observations in exponential family models. Scand. J. Statist. 7 27 32. Z. · Zbl 0432.62020
[22] ROBBINS, H. and MONRO, S. 1951. A stochastic approximation method. Ann. Math. Statist. 22 400 407. Z. · Zbl 0054.05901 · doi:10.1214/aoms/1177729586
[23] WEDDERBURN, R. W. M. 1974. Quasi-likelihood functions, generalized linear models, and the Gauss Newton method. Biometrika 61 439 447. Z. Z. JSTOR: · Zbl 0292.62050
[24] WETHERILL, G. B. 1963. Sequential estimation of quantal response curves with discussion. J. Roy. Statist. Soc. Ser. B 25 1 48. Z. JSTOR: · Zbl 0203.21505
[25] WU, C. F. J. 1985. Efficient sequential designs with binary data. J. Amer. Statist. Assoc. 80 974 984. Z. JSTOR: · Zbl 0588.62133 · doi:10.2307/2288563
[26] WU, C. F. J. 1986. Maximum likelihood recursion and stochastic approximation in sequential Z. designs. In Adaptive Statistical Procedures and Related Topics J. Van Ryzin, ed. · Zbl 0679.62066 · doi:10.1214/lnms/1215540307
[27] IMS, Hayward, CA. · Zbl 1245.00038
[28] HILL CENTER, BUSCH CAMPUS RUTGERS UNIVERSITY PISCATAWAY, NEW JERSEY 08855 E-MAIL: zying@stat.rutgers.edu
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.