×

Hyperelliptic maps and surfaces. (English) Zbl 0958.05035

The author focuses on the relationship between hyperelliptic maps and hyperelliptic Riemann surfaces. It is known that underlying any map \(M\) on an orientable surface, there is a unique Riemann surface \(X(M)\) naturally associated with \(M\). If \(M\) is hyperelliptic then so is \(X(M)\). It is also shown that in the special case when \(M\) is a regular map, the converse holds.

MSC:

05C10 Planar graphs; geometric and topological aspects of graph theory
30F99 Riemann surfaces
PDF BibTeX XML Cite
Full Text: EuDML

References:

[1] BESSIS L.: Atomorphismes d’hypercartes. Thèse, Université Paris 7 (1993).
[2] CORI R.-MACHI A.: Maps, hypermaps and their automorphisms: a survey III. Exposition. Math. 10 (1992), 449-467. · Zbl 0772.05039
[3] CORN D.-SINGERMAN D.: Regular hypermaps. European J. Combin. 9 (1988), 337-351. · Zbl 0665.57002
[4] COXETER H. S. M.-MOSER W. O. J.: Generators and Relations for Discrete Groups. Springer-Verlag, Berlin-Göttingen-Heidelberg-New York, 1965. · Zbl 0133.28002
[5] FARKAS H. M.-KRA I.: Riemann Surfaces. Grad. Texts in Math., Springer-Verlag, Berlin-Göttingen-Heidelberg-New York, 1980. · Zbl 0475.30001
[6] GROTHENDIECK A.: Esquisse d’un programme. Preprint, Montpellier 1984. · Zbl 0901.14001
[7] HARVEY W. J.: Cyclic groups of automorphisms of a compact Riemann surface. Quart. J. Math. Oxford Ser. (2) 17 (1966), 86-97. · Zbl 0156.08901
[8] JONES G. A.-SINGERMAN D.: Theory of maps on orientable surfaces. Proc. London Math. Soc. (3) 37 (1978), 273-307. · Zbl 0391.05024
[9] JONES G. A.-SINGERMAN D.: Complex Functions, an Algebraic and Geometric Viewpoint. Cambridge University Press, Cambridge, 1987. · Zbl 0608.30001
[10] MACLACHLAN C.: Smooth coverings of hyperelliptic surfaces. Quart. J. Math. Oxford Ser. (2) 22 (1971), 117-123. · Zbl 0208.10101
[11] SINGERMAN D.: Finitely maximal Fuchsian groups. J. London Math. Soc. (2) 6 (1972), 29-38. · Zbl 0251.20052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.