zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On a question about sum-free sequences. (English) Zbl 0958.11023
Eine monoton wachsende Folge natürlicher Zahlen $(n_1, n_2,\dots, n_k,\dots)$ heißt Summen-frei (sum-free), wenn kein Glied der Folge Summe von verschiedenen Folgengliedern ist. Es werden als neue Resultate bewiesen: Es gibt eine Summen-freie Folge $(n_k)$ mit $n_{k+1}/n_k\to 1$ für $k\to \infty$ (Theorem 3) sowie: Für jedes $\delta> 0$ gibt es eine Summen-freie Folge $(n_k)$ mit $n_k\sim k^{3+\delta}$ (Theorem 4). Die Beweise verlaufen konstruktiv.
11B83Special sequences of integers and polynomials
Full Text: DOI
[1] Abbott, H. L.: On sum-free sequences. Acta arith. 48, 93-96 (1987) · Zbl 0619.10055
[2] Erdo?s, P.: Some remarks on number theory, III. Mat. lapok 13, 28-38 (1962) · Zbl 0123.25503
[3] P. Erdo?s, personal communication, 29 May 1996.
[4] Kuipers, L.; Niederreiter, H.: Uniform distribution of sequences. (1974) · Zbl 0281.10001
[5] Levine, E.: An extremal result for sum-free sequences. J. number theory 12, 251-257 (1980) · Zbl 0431.10035
[6] Levine, E.; O’sullivan, J.: An upper estimate for the reciprocal sum of a sum-free sequence. Acta arith. 34, 9-24 (1977) · Zbl 0335.10053