×

Renormalization solutions of elliptic equations with general measure data. (English) Zbl 0958.35045

Authors’ abstract: We study the nonlinear monotone elliptic problem \[ \begin{cases} -\text{div}\bigl(a(x,\nabla u)\bigr)=\mu\quad & \text{ on }\Omega,\\ u=0\quad & \text{ on }\partial\Omega,\end{cases} \] when \(\Omega\subset \mathbb{R}^N\), \(\mu\) is a Radon measure with bounded total variation on \(\Omega\), \(1<p\leq N\), and \(u\mapsto -\text{div}(a(x,\nabla u))\) is a monotone operator acting on \(W_0^{1,p}(\Omega)\). We introduce a new definition of the solution (the renormalized solution) in four equivalent ways. We prove the existence of a renormalized solution by an approximation procedure, where the key point is a stability result (the strong convergence in \(W_0^{1,p}(\Omega)\) of the truncates). We also prove partial uniqueness results.
Reviewer: A.Doktor (Praha)

MSC:

35J60 Nonlinear elliptic equations
35A05 General existence and uniqueness theorems (PDE) (MSC2000)
35D05 Existence of generalized solutions of PDE (MSC2000)
35A15 Variational methods applied to PDEs
35J25 Boundary value problems for second-order elliptic equations
35J65 Nonlinear boundary value problems for linear elliptic equations
35R05 PDEs with low regular coefficients and/or low regular data
31C45 Other generalizations (nonlinear potential theory, etc.)

References:

[1] P. Benilan - L. Boccardo - T. Gallouët - R. Gariepy - M. Pierre - J.L. Vazquez , An L1 theory of existence and uniqueness of nonlinear elliptic equations , Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22 ( 1995 ), 241 - 273 . Numdam | MR 1354907 | Zbl 0866.35037 · Zbl 0866.35037
[2] L. Boccardo , Elliptic and parabolic differential problems with measure data ., Boll. Un. Mat. Ital. 11 ( 1997 ), 439 - 461 . MR 1477785 | Zbl 0893.35131 · Zbl 0893.35131
[3] L. Boccardo - T. Gallouët , Nonlinear elliptic and parabolic equations involving measure data , J. Funct. Anal. 87 ( 1989 ), 149 - 169 . MR 1025884 | Zbl 0707.35060 · Zbl 0707.35060 · doi:10.1016/0022-1236(89)90005-0
[4] L. Boccardo - T. Gallouët , Nonlinear elliptic equations with right hand side measures , Comm. Partial Differential Equations 17 ( 1992 ), 641 - 655 . MR 1163440 | Zbl 0812.35043 · Zbl 0812.35043 · doi:10.1080/03605309208820857
[5] L. Boccardo - T. Gallouët - L. Orsina , Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data , Ann. Inst. H. Poincaré Anal. Non Linéaire 13 ( 1996 ), 539 - 551 . Numdam | MR 1409661 | Zbl 0857.35126 · Zbl 0857.35126
[6] L. Boccardo - F. Murat , Remarques sur l’homogénéisation de certains problèmes quasilinéaires , Portugaliae Math. 41 ( 1982 ), 535 - 562 . Article | MR 766874 | Zbl 0524.35042 · Zbl 0524.35042
[7] L. Boccardo - F. Murat , Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations , Nonlinear Anal. 19 ( 1992 ), 581 - 597 . MR 1183665 | Zbl 0783.35020 · Zbl 0783.35020 · doi:10.1016/0362-546X(92)90023-8
[8] D. Cioranescu - F. Murat , Un terme étrange venu d’ailleurs I & II , In: ” Nonlinear partial differential equations and their applications ” Collège de France Seminar , Vol. II & III , H. Brezis and J.-L. Lions (eds.), Research Notes in Math. 60 & 70 , Pitman , Boston ( 1982 ), 98 - 138 , 154 - 178 . English translation: A strange term coming from nowhere , In: ” Topics in the mathematical modelling of composite materials ”, 45 - 93 , Progr. Nonlinear Differential Equations Appl. 31 , Birkhäuser Boston , Boston , 1997 . MR 1493040 | Zbl 0496.35030 · Zbl 0496.35030
[9] A. Dall’aglio , Approximated solutions of equations with L 1 data. Application to the H-convergence of parabolic quasi-linear equations , Ann. Mat. Pura Appl. 170 ( 1996 ), 207 - 240 . MR 1441620 | Zbl 0869.35050 · Zbl 0869.35050 · doi:10.1007/BF01758989
[10] G. Dal Maso - A. Malusa , Some properties of reachable solutions of nonlinear elliptic equations with measure data , Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25 ( 1997 ), 375 - 396 . Numdam | MR 1655522 | Zbl 1033.35034 · Zbl 1033.35034
[11] G. Dal Maso - F. Murat - L. Orsina - A. Prignet , Definition and existence of renormalized solutions of elliptic equations with general measure data , C. R. Acad. Sci. Paris Sér. I Math. 325 ( 1997 ), 481 - 486 . MR 1692311 | Zbl 0887.35057 · Zbl 0887.35057 · doi:10.1016/S0764-4442(97)88893-3
[12] G. Dolzmann - N. Hungerbühler - S. Muller , Uniqueness and maximal regularity for nonlinear elliptic systems of n-Laplace type with measure valued right hand side , Preprint 20, Max-Planck-Institut für Mathematik in den Naturwissenschaften , Leipzig ( 1998 ). MR 1748270
[13] A. Fiorenza - C. Sbordone , Existence and uniqueness results for solutions of nonlinear equations with right-hand side in L 1 (\Omega ) , Studia Math. 127 ( 1998 ), 223 - 231 . Article | Zbl 0891.35039 · Zbl 0891.35039
[14] M. Fukushima - K. Sato - S. Taniguchi , On the closable part of pre-Dirichlet forms and the fine support of the underlying measures , Osaka J. Math. 28 ( 1991 ), 517 - 535 . MR 1144471 | Zbl 0756.60071 · Zbl 0756.60071
[15] T. Gallouët - R. Herbin , Existence of a solution to a coupled elliptic system , Appl. Math. Letters 7 ( 1994 ), 49 - 55 . MR 1350145 | Zbl 0791.35043 · Zbl 0791.35043 · doi:10.1016/0893-9659(94)90030-2
[16] L. Greco - T. Iwaniec - C. Sbordone , Inverting the p-harmonic operator , Manuscripta Math. 92 ( 1997 ), 249 - 258 . Article | MR 1428651 | Zbl 0869.35037 · Zbl 0869.35037 · doi:10.1007/BF02678192
[17] J. Heinonen - T. Kilpeläinen - O. Martio , ” Nonlinear Potential Theory of Degenerate Elliptic Equations ”, Oxford University Press , 1993 . MR 1207810 | Zbl 0780.31001 · Zbl 0780.31001
[18] S. Kichenassamy , Quasilinear problems with singularities , Manuscripta Math. 57 ( 1987 ), 281 - 313 . Article | MR 873469 | Zbl 0595.35024 · Zbl 0595.35024 · doi:10.1007/BF01437485
[19] S. Kichenassamy - L. Veron , Singular solutions of the p-Laplace equation , Math. Ann. 275 ( 1986 ), 599 - 615 . MR 859333 | Zbl 0592.35031 · Zbl 0592.35031 · doi:10.1007/BF01459140
[20] C. Leone - A. Porretta , Entropy solutions for nonlinear elliptic equations in L1 , Nonlinear Anal . 32 ( 1998 ), 325 - 334 . MR 1610574 | Zbl 01337963 · Zbl 1155.35352 · doi:10.1016/S0362-546X(96)00323-9
[21] J. Leray - J.-L. Lions , Quelques résultats de višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder , Bull. Soc. Math. France 93 ( 1965 ), 97 - 107 . Numdam | MR 194733 | Zbl 0132.10502 · Zbl 0132.10502
[22] J.-L. Lions , ”Quelques méthodes de résolution des problèmes aux limites non linéaires” , Dunod et Gauthier-Villars , Paris , 1969 . MR 259693 | Zbl 0189.40603 · Zbl 0189.40603
[23] P.-L. Lions - F. Murat , Solutions renormalisées d’équations elliptiques non linéaires , to appear.
[24] M. Marcus - V.J. Mizel , Nemitsky operators on Sobolev spaces , Arch. Rational Mech. Anal. 51 ( 1973 ), 347 - 370 . MR 348480 | Zbl 0266.46029 · Zbl 0266.46029 · doi:10.1007/BF00263040
[25] F. Murat , Soluciones renormalizadas de EDP elipticas no lineales, Preprint 93023 , Laboratoire d’Analyse Numérique de l’Université Paris VI ( 1993 ).
[26] F. Murat , Équations elliptiques non linéaires avec second membre L1 ou mesure , Actes du 26ème Congrés National d’Analyse Numérique, Les Karellis , France ( 1994 ), A12 - A24 .
[27] A. Prignet , Remarks on existence and uniqueness of solutions of elliptic problems with right-hand side measures , Rend. Mat. 15 ( 1995 ), 321 - 337 . MR 1362776 | Zbl 0843.35127 · Zbl 0843.35127
[28] J. Serrin , Pathological solutions of elliptic differential equations , Ann. Scuola Norm. Sup. Pisa Cl. Sci. 18 ( 1964 ), 385 - 387 . Numdam | MR 170094 | Zbl 0142.37601 · Zbl 0142.37601
[29] G. Stampacchia , Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus , Ann. Inst. Fourier ( Grenoble ) 15 ( 1965 ), 189 - 258 . Numdam | MR 192177 | Zbl 0151.15401 · Zbl 0151.15401 · doi:10.5802/aif.204
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.