Li, Yi A.; Olver, Peter J. Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation. (English) Zbl 0958.35119 J. Differ. Equations 162, No. 1, 27-63 (2000). The main objective of the work is to rigorously prove the well-posedness of the Camassa-Holm equation, which is an integrable equation appearing in the theory of waves on a surface of an ideal fluid. Unlike the classical Korteweg-de Vries equation, the Camassa-Holm equation is a fully nonlinear one (in fact, it contains no linear terms except for the time derivative, \(\partial u\partial t\)), therefore it has both regular soliton solutions and the so-called cuspons, which are solitons with a finite amplitude but singular first derivative. The approach adopted in the work is based on regularizing the equation by adding to it a linear dispersive term, followed by consideration of the limit in which the coefficient in front of the regularizing term is vanishing. As a result, the authors prove that the Camassa-Holm equation is locally wellposed in the Sobolev space of initial conditions \(H^s\) with any \(s>3/2\). Despite this result, blow-up solutions, i.e., those which develop a singularity in a finite time, are found too, and the formation of the singularity by these solutions is also studied in the paper. Reviewer: Boris A.Malomed (Tel Aviv) Cited in 2 ReviewsCited in 385 Documents MSC: 35Q53 KdV equations (Korteweg-de Vries equations) 37K40 Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems 76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction 76B25 Solitary waves for incompressible inviscid fluids Keywords:well-posedness; Camassa-Holm equation; cuspons; soliton solutions; singularity PDF BibTeX XML Cite \textit{Y. A. Li} and \textit{P. J. Olver}, J. Differ. Equations 162, No. 1, 27--63 (2000; Zbl 0958.35119) Full Text: DOI Link Digital Library of Mathematical Functions: §22.19(iii) Nonlinear ODEs and PDEs ‣ §22.19 Physical Applications ‣ Applications ‣ Chapter 22 Jacobian Elliptic Functions References: [1] Alber, M. S.; Camassa, R.; Holm, D. D.; Marsden, J. E., On the link between umbilic geodescis and soliton solutions of nonlinear PDEs, Proc. Roy. Soc. London A, 450, 677-692 (1995) · Zbl 0835.35125 [2] Alber, M. S.; Camassa, R.; Holm, D. D.; Marsden, J. E., The geometry of peaked solitons and billiard solutions of a class of integrable PDEs, Lett. Math. Phys., 32, 137-151 (1994) · Zbl 0808.35124 [3] Albert, J. P.; Bona, J. L.; Felland, M., A criterion for the formation of singularities for the generalized Korteweg-de Vries equation, Mat. Appl. Comp., 7, 3-11 (1988) · Zbl 0694.35178 [4] Amick, C. J.; Toland, J. F., On solitary waves of finite amplitude, Arch. Rat. Mech. Anal., 76, 9-95 (1981) · Zbl 0468.76025 [5] Benjamin, T. B.; Bona, J. L.; Mahoney, J. J., Model equations for long waves in nonlinear dispersive systems, Phil. Trans. Roy. Soc. London A, 272, 47-78 (1972) · Zbl 0229.35013 [6] Benjamin, T. B.; Olver, P. J., Hamiltonian structure, symmetries and conservation laws for water waves, J. Fluid Mech., 125, 127-185 (1982) · Zbl 0511.76020 [7] Bona, J. L.; Li, Y. A., Decay and analyticity of solitary waves, J. Math. Pures Appl., 76 (1997) · Zbl 0878.35098 [8] Bona, J. L.; Smith, R., The initial value problem for the Korteweg-de Vries equation, Phil. Trans. Roy. Soc. London A, 278, 555-601 (1975) · Zbl 0306.35027 [9] Boussinesq, J., Théorie générale des mouvements qui sont propagés dans un canal rectangulaire horizontal, Comptes Rendus Acad. Sci. Paris, 73, 256-260 (1871) · JFM 03.0486.02 [10] Boussinesq, J., Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond, J. Math. Pures Appl., 17, 55-108 (1872) · JFM 04.0493.04 [11] Boussinesq, J., Essai sur la théorie des eaux courants, Mém. Acad. Sci. Inst. Nat. France, 23, 1-680 (1877) · JFM 09.0680.04 [12] Camassa, R.; Holm, D. D., An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71, 1661-1664 (1993) · Zbl 0972.35521 [13] Camassa, R.; Holm, D. D.; Hyman, J. M., A new integrable shallow water equation, Adv. Appl. Mech., 31, 1-33 (1994) · Zbl 0808.76011 [14] Carpenter, M.; Gottlieb, D., Spectral methods on arbitrary grids, J. Comput. Phys., 129, 74-86 (1996) · Zbl 0862.65054 [15] Constantin, A.; Escher, J., Global existence and blow-up for a shallow water equation, Ann. Sc. Norm. Sup. Pisa (4), 26, 303-328 (1998) · Zbl 0918.35005 [16] Constantin, A.; Escher, J., Well-posedness, global existence, and blow-up phenomena for a periodic quasilinear hyperbolic equation, Commun. Pure Appl. Math., 51, 475-504 (1998) · Zbl 0934.35153 [17] Constantin, A.; Escher, J., On the Cauchy problem for a family of quasilinear hyperbolic equations, Comm. Partial Differential Equations, 23, 1449-1458 (1998) · Zbl 0913.35091 [18] Constantin, A.; Escher, J., Wave breaking for nonlinear nonlocal shallow water equations, Comm. Partial Differential Equations, 23, 1449-1458 (1998) · Zbl 0913.35091 [19] Constantin, A.; McKean, H., A shallow water equation on the circle, Comm. Pure Appl. Math., 52, 949-982 (1999) · Zbl 0940.35177 [20] Dushane, T. E., Generalizations of the Korteweg-de Vries equations, Proc. Sympos. Pure Math., 23, 303-307 (1971) [21] Duzhin, S. V.; Tsujishita, T., Conservation laws of the BBM equation, J. Phys. A, 17, 3267-3276 (1984) · Zbl 0563.58039 [22] Fokas, A. S., On a class of physically important equations, Physica D, 87, 145-150 (1995) · Zbl 1194.35363 [23] Fokas, A. S.; Olver, P. J.; Rosenau, P., A plethora of integrable bi-Hamiltonian equations, (Fokas, A. S.; Gel’fand, I. M., Algebraic Aspects of Integrable Systems: In Memory of Irene Dorfman. Algebraic Aspects of Integrable Systems: In Memory of Irene Dorfman, Progress in Nonlinear Differential Equations, 26 (1996), Birkhäuser: Birkhäuser Boston), 93-101 · Zbl 0865.35121 [24] Fornberg, B.; Whitham, G. B., A numerical and theoretical study of certain nonlinear wave phenomena, Phil. Trans. Roy. Soc. London A, 289, 373-404 (1978) · Zbl 0384.65049 [25] Fuchssteiner, B., The Lie algebra structure of nonlinear evolution equations admitting infinite dimensional abelian symmetry groups, Prog. Theor. Phys., 65, 861-876 (1981) · Zbl 1074.58501 [26] Fuchssteiner, B., Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa-Holm equation, Physica D, 95, 229-243 (1996) · Zbl 0900.35345 [27] Fuchssteiner, B.; Fokas, A. S., Symplectic structures, their Bäcklund transformations and hereditary symmetries, Physica D, 4, 47-66 (1981) · Zbl 1194.37114 [28] Gardner, C. S.; Greene, J. M.; Kruskal, M. D.; Miura, R. M., Method for solving the Korteweg-de Vries equation, Phys. Rev. Lett., 19, 1095-1097 (1967) · Zbl 1061.35520 [30] Kato, T., On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Adv. Math. Suppl. Stud. Appl. Math., 8, 93-128 (1983) [31] Kato, T.; Ponce, G., Commutator estimates and the Euler and Navier-Stokes equations, Commun. Pure Appl. Math., 41, 891-907 (1988) · Zbl 0671.35066 [32] Kenig, C. E.; Ponce, G.; Vega, L., Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Commun. Pure Appl. Math., 46, 527-620 (1993) · Zbl 0808.35128 [33] Kenig, C. E.; Ponce, G.; Vega, L., The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices, Duke Math. J., 71, 1-21 (1993) · Zbl 0787.35090 [34] Korteweg, D. J.; de Vries, G., On the change of form of long waves advancing in a rectangular channel, and on a new type of long stationary waves, Phil. Mag., 39, 422-442 (1895) · JFM 26.0881.02 [35] Li, Y. A., Weak solutions of a generalized Boussinesq system, J. Dyn. Differential Equations, 11, 625-669 (1999) · Zbl 0941.35078 [36] Li, Y. A.; Olver, P. J., Convergence of solitary-wave solutions in a perturbed bi-Hamiltonian dynamical system. I. Compactons and peakons, Discrete Cont. Dyn. Syst., 3, 419-432 (1997) · Zbl 0949.35118 [37] Li, Y. A.; Olver, P. J., Convergence of solitary-wave solutions in a perturbed bi-Hamiltonian dynamical system. II. Complex analytic behavior and convergence to non-analytic solutions, Discrete Cont. Dyn. Syst., 4, 159-191 (1998) · Zbl 0959.35157 [38] Lions, J.-L., Quelques Méthodes de Résolution des Problèmes aux Limites Nonlinéaires (1969), Dunod, Gauthier-Villars: Dunod, Gauthier-Villars Paris · Zbl 0189.40603 [39] Magri, F., A simple model of the integrable Hamiltonian equation, J. Math. Phys., 19, 1156-1162 (1978) · Zbl 0383.35065 [40] Masayoshi, M.; Mukasa, T., Parabolic regularizations for the generalized Korteweg– de Vries equation, Funkcialaj Ekvacioj, 14, 89-110 (1971) · Zbl 0228.35077 [41] Nutku, Y., On a new class of completely integrable nonlinear wave equations. II. Multi-Hamiltonian structure, J. Math. Phys., 28, 2579-2585 (1987) · Zbl 0662.35084 [42] Olver, P. J., Euler operators and conservation laws of the BBM equation, Math. Proc. Camb. Phil. Soc., 85, 143-160 (1979) · Zbl 0387.35050 [43] Olver, P. J., Hamiltonian perturbation theory and water waves, Comtemp. Math., 28, 231-249 (1984) · Zbl 0521.76018 [44] Olver, P. J., Hamiltonian and non-Hamiltonian models for water waves, (Ciarlet, P. G.; Roseau, M., Trends and Applications of Pure Mathematics to Mechanics. Trends and Applications of Pure Mathematics to Mechanics, Lecture Notes in Physics, 195 (1984), Springer-Verlag: Springer-Verlag New York), 273-290 [45] Olver, P. J.; Nutku, Y., Hamiltonian structures for systems of hyperbolic conservation laws, J. Math. Phys., 29, 1610-1619 (1988) · Zbl 0697.35084 [46] Olver, P. J., Applications of Lie Groups to Differential Equations. Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics, 107 (1993), Springer-Verlag: Springer-Verlag New York · Zbl 0785.58003 [47] Olver, P. J.; Rosenau, P., Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, Phys. Rev. E, 53, 1900-1906 (1996) [48] Rosenau, P., Nonlinear dispersion and compact structures, Phys. Rev. Lett., 73, 1737-1740 (1994) · Zbl 0953.35501 [49] Rosenau, P., On solitons, compactons and Lagrange maps, Phys. Lett. A, 211, 265-275 (1996) · Zbl 1059.35524 [50] Rosenau, P., On nonanalytic waves formed by a nonlinear dispersion, Phys. Lett. A, 230, 305-318 (1997) · Zbl 1052.35511 [51] Rosenau, P.; Hyman, J. M., Compactons: solitons with finite wavelength, Phys. Rev. Lett., 70, 564-567 (1993) · Zbl 0952.35502 [52] Sachs, R. L., On the blow-up of certain solutions of the “good” Boussinesq equation, Appl. Anal., 36, 145-152 (1990) · Zbl 0674.35082 [53] Saut, J. C.; Temam, R., Remarks on the Korteweg-de Vries equation, Israel J. Math., 24, 78-87 (1976) · Zbl 0334.35062 [54] Schiff, J., Zero curvature formulations of dual hierarchies, J. Math. Phys., 37, 1928-1938 (1996) · Zbl 0863.35093 [55] Schiff, J., The Camassa-Holm equation: a loop group approach, Physica D, 121, 24-43 (1998) · Zbl 0943.37034 [56] Russell, J. Scott, British Assoc. Report (1844) [57] Temam, R., Sur un problème non linéaire, J. Math. Pures Appl., 48, 159-172 (1969) · Zbl 0187.03902 [58] Toland, J. F., On the existence of a wave of greatest height and Stokes’ conjecture, Proc. Roy. Soc. London A, 363, 469-485 (1978) · Zbl 0388.76016 [59] Walter, W., Differential and Integral Inequalities (1970), Springer-Verlag: Springer-Verlag New York [60] Whitham, G. B., Linear and Nonlinear Waves (1974), John Wiley & Sons: John Wiley & Sons New York · Zbl 0373.76001 [61] Zakharov, V. E., Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Phys., 2, 190-194 (1968) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.