Bourgain, Jean Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case. (English) Zbl 0958.35126 J. Am. Math. Soc. 12, No. 1, 145-171 (1999). Summary: We establish global wellposedness and scattering for the \(H^{1}\)-critical defocusing nonlinear Schrödinger equation in 3D \[ iu_{t}+\Delta u - u|u|^{4}=0 \] assuming radial data \(\phi \in H^{s}\), \(s\geq 1\). In particular, it proves global existence of classical solutions in the radial case. The same result is obtained in 4D for the equation \[ iu_{t}+\Delta u -u|u|^{2} =0 . \] Cited in 6 ReviewsCited in 177 Documents MSC: 35Q55 NLS equations (nonlinear Schrödinger equations) 35A05 General existence and uniqueness theorems (PDE) (MSC2000) 35L15 Initial value problems for second-order hyperbolic equations Keywords:nonlinear Schrödinger equation; global wellposedness × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Jeng Eng Lin and Walter A. Strauss, Decay and scattering of solutions of a nonlinear Schrödinger equation, J. Funct. Anal. 30 (1978), no. 2, 245 – 263. · Zbl 0395.35070 · doi:10.1016/0022-1236(78)90073-3 [2] Michael Struwe, Globally regular solutions to the \?\(^{5}\) Klein-Gordon equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 15 (1988), no. 3, 495 – 513 (1989). · Zbl 0728.35072 [3] Manoussos G. Grillakis, Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity, Ann. of Math. (2) 132 (1990), no. 3, 485 – 509. · Zbl 0736.35067 · doi:10.2307/1971427 [4] Jalal Shatah and Michael Struwe, Regularity results for nonlinear wave equations, Ann. of Math. (2) 138 (1993), no. 3, 503 – 518. · Zbl 0836.35096 · doi:10.2307/2946554 [5] T. Cazenave, An introduction to nonlinear Schrödinger equations, Textos de Metodes Matematicos 26 (Rio de Janeiro). · Zbl 0584.35022 [6] Thierry Cazenave and Fred B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in \?^{\?}, Nonlinear Anal. 14 (1990), no. 10, 807 – 836. · Zbl 0706.35127 · doi:10.1016/0362-546X(90)90023-A [7] J. Ginibre and G. Velo, Scattering theory in the energy space for a class of nonlinear Schrödinger equations, J. Math. Pures Appl. (9) 64 (1985), no. 4, 363 – 401. · Zbl 0535.35069 [8] Jean Ginibre and Giorgio Velo, On a class of nonlinear Schrödinger equations with nonlocal interaction, Math. Z. 170 (1980), no. 2, 109 – 136. · Zbl 0407.35063 · doi:10.1007/BF01214768 [9] Robert S. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J. 44 (1977), no. 3, 705 – 714. · Zbl 0372.35001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.