Migda, Małgorzata; Schmeidel, Ewa Some properties of solutions of a class of nonlinear difference equations. (English) Zbl 0958.39012 Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 38, 131-137 (1999). The authors study the existence of nonoscillatory bounded solutions and some other properties of solutions to the second-order difference nonlinear difference equation \[ \Delta r\bigl(r(n)\Delta y(n) \bigr)+ f\bigl(n,y(n), \Delta y(n) \bigr)=0. \] Reviewer: Bolis Basit (Clayton) MSC: 39A11 Stability of difference equations (MSC2000) Keywords:nonoscillatory bounded solutions; second-order difference nonlinear difference equation PDF BibTeX XML Cite \textit{M. Migda} and \textit{E. Schmeidel}, Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 38, 131--137 (1999; Zbl 0958.39012) Full Text: EuDML OpenURL References: [1] Belohorec S.: Monotone and oscillatory solutions of a class of nonlinear differential equations. Matematicky casopis 3 (1969), 169-187. · Zbl 0271.34045 [2] Drozdowicz A.: On the asymptotic behavior of solutions of second order nonhomogeneous difference equations. Annali di Matematica pura ad applicata 4, CLV (1989), 75-84. · Zbl 0702.39001 [3] Halmos P.: Measure theory. D. Van Nostrand Company, New York, 1950. · Zbl 0040.16802 [4] Kufner A., John O., Fucik S.: Function Spaces. Czechoslovak Academy of Sciences, Prague, 1977. · Zbl 0364.46022 [5] Musielak J.: Wstȩp do analizy funkcjonalnej. Państwowe Wydawnictwo Naukowe, 1976) [6] Szmanda B.: Characterization of Oscillation of Second Order Nonlinear Difference Equations. Bull. Polish Acad. Sci. Math. 34 (1986), 133-141. · Zbl 0598.39004 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.