Some algorithms for quartic smoothing splines. (English) Zbl 0958.41004

Summary: This paper treats quartic splines smoothing mean values. Local representation using the first and the second derivatives in knots is applied. Two algorithms of computing these local parameters are presented for all three types (natural, periodic and complete) of smoothing spline.


41A15 Spline approximation
65D05 Numerical interpolation
Full Text: EuDML


[1] De Boor C.: A Practical Guide to Splines. Springer Verlag, New York, 1978. · Zbl 0406.41003
[2] Fiedler M.: Speciální matice a jejich použití v numerické matematice. SNTL, Praha, 1981. · Zbl 0531.65008
[3] Kobza J.: Spline recurrences for quartic splines. Acta Univ. Palacki. Olomuc., Fac. rer. nat. 34, Math. (1995), 75-89. · Zbl 0854.41011
[4] Kobza J.: Quartic interpolatory splines. Studia Univ. ”Babes-Bolyai”, Math., Cluj-Napoca, 1996 · Zbl 1007.41007
[5] Kobza J.: Quartic smoothing splines. Proceedings of the XIth Summer School Software and Algorithms of Numerical Mathematics, Železná Ruda, University of West Bohemia-Charles University-UCMF, 1996, 122-134.
[6] Kobza J.: Splajny. VUP, Olomouc, 1993
[7] Kobza J.: Some algorithm for computing local parameters of quartic interpolatory splines. Acta Univ. Palacki. Olomuc., Fac. rer. nat. 33, Math. 114 (1994). · Zbl 0851.41009
[8] Kučera R.: Complete Quadratic Spline Histogram Smoothing. Folia Fac. Sci. Nat. Univ. Masaryk Brunensis, 1996
[9] Spaeth H.: Eindimensionale Spline-Interpolations-Algorithmen. R. Oldenbourgh Verlag, 1990, 391 pp. · Zbl 0701.41015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.