×

Conjugacy classes of the hyperelliptic mapping class group of genus 2 and 3. (English) Zbl 0958.57018

Summary: We present tables of conjugacy classes of the hyperelliptic mapping class group of genus 2 and 3, and some theorems on the Sp representation, the Jones representation, and Meyer’s function.

MSC:

57N05 Topology of the Euclidean \(2\)-space, \(2\)-manifolds (MSC2010)
57M50 General geometric structures on low-dimensional manifolds
PDFBibTeX XMLCite
Full Text: DOI Euclid EuDML

References:

[1] Birman j. S., Ann. of Math. (2) 97 pp 424– (1973) · Zbl 0237.57001 · doi:10.2307/1970830
[2] Endo H., Math. Ann. 316 (2) pp 237– (2000) · Zbl 0948.57013 · doi:10.1007/s002080050012
[3] Humphries S. P., Topology of low-dimensional manifolds (Chelwood Gate, Sussex, 1977) pp 44– (1979) · doi:10.1007/BFb0063188
[4] Jones V. F. R., Ann. Of Math. (2) 126 (2) pp 335– (1987) · Zbl 0631.57005 · doi:10.2307/1971403
[5] Kazhdan D., Invent. Math. 53 (2) pp 165– (1979) · Zbl 0499.20035 · doi:10.1007/BF01390031
[6] Lickorish W. B. R., Proc. Cambridge Philos. Soc. 60 pp 769– (1964) · doi:10.1017/S030500410003824X
[7] Lickorish W. B. R., Proc. Cambridge Philos. Soc. 60 pp 769– (1964)
[8] Matsumoto M., Math. alnn. 316 (3) pp 401– (2000) · Zbl 0968.57014 · doi:10.1007/s002080050336
[9] Meyer W., Math. Ann. 201 pp 239– (1973) · Zbl 0241.55019 · doi:10.1007/BF01427946
[10] Ochiai M., Experiment. Math. 4 (1) pp 61– (1995) · Zbl 0846.20016 · doi:10.1080/10586458.1995.10504308
[11] Penner R. C., Combinatorics of train tracks, Ann. Math. Studies 125 (1992) · Zbl 0765.57001 · doi:10.1515/9781400882458
[12] Thurston W. P., Bull. Amer. Math. Soc. (N.S.) 19 (2) pp 417– (1988) · Zbl 0674.57008 · doi:10.1090/S0273-0979-1988-15685-6
[13] Wajnryb B., Israel J. Math. 45 (2) pp 157– (1983) · Zbl 0533.57002 · doi:10.1007/BF02774014
[14] Wenzl H., Invent. Math. 92 (2) pp 349– (1988) · Zbl 0663.46055 · doi:10.1007/BF01404457
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.