Korolyuk, V. S.; Limnios, N. Diffusion approximation of integral functionals in merging and averaging scheme. (English. Ukrainian original) Zbl 0958.60038 Theory Probab. Math. Stat. 59, 101-107 (1999); translation from Teor. Jmorvirn. Mat. Stat. 59, 99-105 (1998). The authors consider an integral functional \(\zeta^{\varepsilon}(t)\) with rapid Markov switchings \(x^{\varepsilon}(t)\) in series scheme of the following form: \(\zeta^{\varepsilon}(t)=\int_{0}^{t}a(x^{\varepsilon}(s)) ds\). Diffusion approximations of such integral functional in averaging and merging schemes are proposed. The diffusion approximation is constructed for the normalized and centered integral functionals. Reviewer: A.V.Swishchuk (Kyïv) Cited in 2 Documents MSC: 60G25 Prediction theory (aspects of stochastic processes) 60J75 Jump processes (MSC2010) 60F17 Functional limit theorems; invariance principles 60J25 Continuous-time Markov processes on general state spaces Keywords:diffusion approximation; integral functionals; merging and averaging scheme PDFBibTeX XMLCite \textit{V. S. Korolyuk} and \textit{N. Limnios}, Teor. Ĭmovirn. Mat. Stat. 59, 99--105 (1998; Zbl 0958.60038); translation from Teor. Jmorvirn. Mat. Stat. 59, 99--105 (1998)