zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A boundary condition capturing method for Poisson’s equation on irregular domains. (English) Zbl 0958.65105
Interface problems have a variety of boundary conditions (or jump conditions) that needs to be enforced. The ghost fluid method (GFM) was developed to capture the boundary conditions at a contact discontinuity in the inviscid Euler equations and has been extended to treat more general discontinuities such as shocks, detonations, and deflagrations and compressible viscous flows. In this paper, a similar boundary condition capturing approach is used to develop a new numerical method for the variable coefficient Poisson equation in the presence of interfaces where both the variable coefficients and the solution itself may be discontinuous. This new method is robust and easy to implement even in three spatial dimensions. Futhermore, the coefficient matrix of the associated linear system is the standard symmetric matrix for the variable coefficient Poisson equation in the absence of interfaces allowing for straightforward application of standard ”black box” solvers.

65N06Finite difference methods (BVP of PDE)
35R05PDEs with discontinuous coefficients or data
35J05Laplacian operator, reduced wave equation (Helmholtz equation), Poisson equation
Full Text: DOI
[1] Brackbill, J. U.; Kothe, D. B.; Zemach, C.: A continuum method for modeling surface tension. J. comput. Phys. 100, 335 (1992) · Zbl 0775.76110
[2] Fedkiw, R.; Aslam, T.; Xu, S.: The ghost fluid method for deflagration and detonation discontinuities. J. comput. Phys. 154, 393 (1999) · Zbl 0955.76071
[3] Fedkiw, R.; Aslam, T.; Merriman, B.; Osher, S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. comput. Phys. 152, 457 (1999) · Zbl 0957.76052
[4] R. Fedkiw, and, X.-D. Liu, The ghost fluid method for viscous flows, in, Progress in Numerical Solutions of Partial Differential Equations. Arcachon, France, 1998, M. Hafez, Ed.
[5] Greenbaum., A.; Mayo, A.: Rapid parallel evaluation of integrals in potential theory on general three-dimensional regions. J. comput. Phys. 145, 731 (1998) · Zbl 0911.65016
[6] Hou, T.; Li, Z.; Osher, S.; Zhao, H.: A hybrid method for moving interface problems with application to the Hele--Shaw flow. J. comput. Phys. 134, 236 (1997) · Zbl 0888.76067
[7] Johansen, H.; Colella, P.: A Cartesian grid embedded boundary method for Poisson’s equation on irregular domains. J. comput. Phys. 147, 60 (1998) · Zbl 0923.65079
[8] M. Kang, R. Fedkiw, and, X.-D. Liu, A boundary condition capturing method for multiphase incompressible flow, submitted for publication. · Zbl 1049.76046
[9] Karni, S.: Multicomponent flow calculations by a consistent primitive algorithm. J. comput. Phys. 112, 31 (1994) · Zbl 0811.76044
[10] Leveque, R. J.; Li, Z.: The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Numer. anal. 31, 1019 (1994) · Zbl 0811.65083
[11] Li, Z.: A fast iterative algorithm for elliptic interface problems. SIAM J. Numer. anal. 35, 230 (1998) · Zbl 0915.65121
[12] Li, Z.: A note on immersed interface method for three dimensional elliptic equations. Comput. math. Appl. 35, 9 (1996) · Zbl 0876.65074
[13] X.-D. Liu, and, T. Sideris, in preparation.
[14] Mayo, A.: Fast high order accurate solutions of Laplace’s equation on irregular domains. SIAM J. Sci. stat. Comput. 6, 144 (1985) · Zbl 0559.65082
[15] Mayo, A.: The fast solution of Poisson’s and the biharmonic equations in irregular domains. SIAM J. Numer. anal. 21, 285 (1984) · Zbl 1131.65303
[16] Mayo, A.: The rapid evaluation of volume integrals of potential theory on general regions. J. comput. Phys. 100, 236 (1992) · Zbl 0772.65012
[17] Mayo, A.; Greenbaum, A.: Fast parallel iterative solution of Poisson’s and the biharmonic equations on irregular regions. SIAM J. Sci. stat. Comput. 13, 101 (1992) · Zbl 0752.65080
[18] Mckenney, A.; Greengard, L.; Mayo, A.: A fast Poisson solver for complex geometries. J. comput. Phys. 118, 348 (1995) · Zbl 0823.65115
[19] Mulder, W.; Osher, S.; Sethian, J. A.: Computing interface motion in compressible gas dynamics. J. comput. Phys. 100, 209 (1992) · Zbl 0758.76044
[20] Peskin, C.: Numerical analysis of blood flow in the heart. J. comput. Phys. 25, 220 (1977) · Zbl 0403.76100
[21] Peskin, C.; Printz, B.: Improved volume conservation in the computation of flows with immersed elastic boundaries. J. comput. Phys. 105, 33 (1993) · Zbl 0762.92011
[22] Osher, S.; Sethian, J. A.: Fronts propagating with curvature dependent speed: algorithms based on Hamilton--Jacobi formulations. J. comput. Phys. 79, 12 (1988) · Zbl 0659.65132
[23] Sussman, M.; Smereka, P.; Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. J. comput. Phys. 114, 146 (1994) · Zbl 0808.76077
[24] Unverdi, S. O.; Tryggvason, G.: A front-tracking method for viscous, incompressible, multi-fluid flows. J. comput. Phys. 100, 25 (1992) · Zbl 0758.76047