## $$(\mathcal L$$, $$\mathcal L')$$-products of algebras.(English)Zbl 0959.08003

Let $$I$$ be a nonempty set. If $$B$$ is an algebra, $$\theta_i$$, $$i\in I$$, a system of congruence relations on $$B$$ and $$M$$ a subset of $$I$$, the symbol $$\theta (M)$$ is used to denote the congruence relation on $$B$$ given as $$\bigwedge \{\theta_j\:j\in I-M\}$$. $$0_B$$ denotes the smallest congruence on $$B$$ and $$1_B$$ denotes the greatest congruence on $$B$$. Let $$A_i$$, $$i\in I$$, be a system of algebras of the same type. $$\prod A_i$$ denotes the direct product of algebras $$A_i$$. If $$x,y\in \prod A_i$$, let us denote $$I(x,y)=\{i\in I\:x(i)\neq y(i)\}$$. Let $$\mathcal L$$, $$\mathcal L'$$ be ideals of $$\mathcal P (I)$$, the power set of $$I$$.
The author defines an $$(\mathcal L,\mathcal L')$$-product of algebras $$A_i$$ as follows. Let $$A$$ be a subdirect product of algebras $$A_i$$. The algebra $$A$$ is an $$(\mathcal L,\mathcal L')$$-product of algebras $$A_i$$ if (i) for all $$x,y\in A$$, $$I(x,y)\in \mathcal L$$, and (ii) if $$x\in A$$, $$y\in \prod A_i$$ and $$I(x,y)\in \mathcal L'$$, then $$y\in A$$. Another definition is the following one. If $$B$$ is an algebra then a system $$\theta_i$$, $$i\in I$$, of congruences on $$B$$ is an $$(\mathcal L,\mathcal L')$$-representation of $$B$$ if the map $$f\:B\to \prod (B/\theta_i)$$, $$\rightarrow f(x)$$, defined by the rule $$f(x)(i)=x/\theta_i$$ $$(x/\theta_i$$ is the congruence class of $$\theta_i$$ containing x), is injective and $$f(B)$$ is an $$(\mathcal L,\mathcal L')$$-product of algebras $$B/\theta_i$$. Special cases of $$(\mathcal L,\mathcal L')$$-representations of algebras are direct, full subdirect and weak direct representations of algebras.
The main result is a characterization of $$(\mathcal L,\mathcal L')$$-representations of algebras: If $$B$$ is an algebra, then a system $$\theta_i$$, $$i\in I$$, of congruence relations on $$B$$ is an $$(\mathcal L,\mathcal L')$$-representation of $$B$$ if and only if (i) $$0_B=\bigwedge \{\theta_i\: i\in I\}$$, (ii) $$1_B=\bigvee \{\theta (M)\:M\in \mathcal L\}$$, and (iii) if $$M\in \mathcal L'$$ and if $$x,y_i\in B (i\in I)$$ are such that $$(x,y_i)\in \theta_i$$ for all $$i\in I-M$$ then there exists $$z\in B$$ satisfying $$(z,y_i)\in \theta_i$$ for all $$i\in I$$.

### MSC:

 08B25 Products, amalgamated products, and other kinds of limits and colimits 08A30 Subalgebras, congruence relations
Full Text:

### References:

 [1] CRAWLEY P.-DILWORTH R. P.: Algebraic Theory of Lattices. Prentice-Hall, Englewood Cliffs, N.J., 1973. · Zbl 0494.06001 [2] DRAŠKOVIČOVÁ H.: Weak direct product decomposition of algebras. Contributions to General Algebra 5. Proc. of the Salzburg Conference, May 29-June 1, Wien, 1987, pp. 105-121. · Zbl 0632.08004 [3] GRÄTZER G.: Universal Algebra. Springer Verlag, New York-Heidelberg-Berlin, 1979. · Zbl 0412.08001 [4] HASHIMOTO J.: Direct, subdirect decompositions and congruence relations. Osaka J. Math. 9 (1957), 87-112. · Zbl 0078.01805 [5] McKENZIE R.-McNULTY G.-TAYLOR W.: Algebras, Lattices, Varieties. Vol. I. Wadsworth & Brooks, Monterey, 1987. · Zbl 0611.08001 [6] WALENDZIAK A.: $$\mathcal L$$-restricted $$\varphi$$-representations of algebras. Period. Math. Hung. 23 (1991), 219-226. · Zbl 0769.08006 [7] WALENDZIAK A.: Full subdirect and weak direct products of algebras. Math. Slovaca. 44 (1994), 45-54. · Zbl 0797.08005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.