Murakami, Kouichi Asymptotic constancy for systems of delay differential equations. (English) Zbl 0959.34058 Nonlinear Anal., Theory Methods Appl. 30, No. 7, 4595-4606 (1997). Results of the paper of K. L. Cooke and J. A. Yorke [Math. Biosci. 16, 75-101 (1973; Zbl 0251.92011)] and the author’s papers [Funkc. Ekvacioj., Ser. Int. 39, No. 3, 519-540 (1996; Zbl 0872.34052) and J. Math. Anal. Appl. 205, No. 2, 512-530 (1997; Zbl 0885.34060)] are extended to the \(n\)-dimensional system \[ x'(t)= A\bigl(x(t- \tau_1)-x(t-\tau _2)\bigr), \quad A\in \mathbb{R}^{n\times n},\;0<\tau_1<\tau_2. \] For an arbitrary \(2\times 2\)-matrix the author gives precise tests for the asymptotic behavior of the solutions depending on \(A\). The solutions may approach a constant or may approach a periodic orbit, or may be unbounded. For the \(n\)-dimensional systems conditions for the existence of an asymptotic equilibrium point are given. Reviewer: Pyotr M.Simonov (MR 99f:34106) Cited in 6 Documents MSC: 34K13 Periodic solutions to functional-differential equations 34K11 Oscillation theory of functional-differential equations 34K20 Stability theory of functional-differential equations Keywords:systems of delay differential equations; solutions; periodic orbit; existence; asymptotic equilibrium Citations:Zbl 0251.92011; Zbl 0872.34052; Zbl 0885.34060 PDF BibTeX XML Cite \textit{K. Murakami}, Nonlinear Anal., Theory Methods Appl. 30, No. 7, 4595--4606 (1997; Zbl 0959.34058) Full Text: DOI OpenURL References: [1] Cooke, K.; Yorke, J., Some Equations Modelling Growth Processes and Gonorrhea Epidemics, Math. Biosci., 16, 75-101 (1973) · Zbl 0251.92011 [2] Diekmann, O.; Van Gils, S. A.; Lunel, S. M. Verduyn; Walther, H.-O., (Delay Equations: Functional-, Complex-, and Nonlinear Analysis (1995), Springer-Verlag: Springer-Verlag Warszawa) · Zbl 0826.34002 [3] Hale, J., (Theory of Functional Differential Equations (1977), Springer-Verlag) [4] Hale, J.; Lunel, S. M. Verduyn, (Introduction to Functional Differential Equations (1993), Springer-Verlag) · Zbl 0787.34002 [5] Kuang, Y., (Delay Differential Equations With Applications in Population Dynamics (1993), Academic Press) [6] Murakami, K., Asymptotic Constancy and Periodic Solutions for Linear Autonomous Delay Differential Equation, Funkcial. Ekvac., 39, 519-540 (1996) · Zbl 0872.34052 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.