zbMATH — the first resource for mathematics

Homoclinic points in symplectic and volume-preserving diffeomorphisms. (English) Zbl 0959.37050
Summary: Let \(M^n\) be a compact \(n\)-dimensional manifold and \(\omega\) be a symplectic or volume form on \(M^n\). Let \(\phi\) be a \(C^1\) diffeomorphism on \(M^n\) that preserves \(\omega\) and let \(p\) be a hyperbolic periodic point of \(\phi\). We show that generically \(p\) has a homoclinic point, and moreover, the homoclinic points of \(p\) are dense on both stable manifold and unstable manifold of \(p\). F. Takens [Invent. Math. 18, 267-292 (1972; Zbl 0247.58007)] obtained the same result for \(n=2\).

37J45 Periodic, homoclinic and heteroclinic orbits; variational methods, degree-theoretic methods (MSC2010)
Full Text: DOI
[1] Hayashi, S.: A connecting lemma. In Preparation · Zbl 0843.58081
[2] Newhouse, S.: Quasi-elliptic periodic points in conservative dynamical systems. Am. J. Math.99, 1061–87 (1977) · Zbl 0379.58011 · doi:10.2307/2374000
[3] Oliveira, F.: On the generic existence of homoclinic points. Ergod. Th. & Dynam. Sys.7, 567–595 (1987) · Zbl 0612.58027
[4] Pixton, D.: Planar homoclinic points. J. Differ. Eqs.44, 365–382 (1982) · Zbl 0506.58029 · doi:10.1016/0022-0396(82)90002-X
[5] Poincare, H.: Les Methodes Nouvelles de la Mécanique Celeste. Tome II, 1899
[6] Pugh, C.: The closing lemma. Am. J. Math.89, 956–1021 (1967) · Zbl 0167.21803 · doi:10.2307/2373413
[7] Pugh, C.: TheC 1 connecting lemma. J. Dynam. & Diff. Eqs.4, No. 4, 545–553 (1992) · Zbl 0764.58030 · doi:10.1007/BF01048259
[8] Pugh, C., Robinson, C.: TheC 1 closing lemma, including Hamiltonians. Ergod. Th. & Dynam. Sys.3, 261–313 (1983) · Zbl 0548.58012
[9] Robinson, C.: Generic Properties of Conservative Systems, I, II. Am. J. of Math.92, 562–603, 897–906 (1970) · Zbl 0212.56502 · doi:10.2307/2373361
[10] Robinson, C.: Closing stable and unstable manifolds on the two-sphere. Proc. Am. Math. Soc.41, 299–303 (1973) · Zbl 0275.58013 · doi:10.1090/S0002-9939-1973-0321141-7
[11] Takens, F.: Homoclinic points in conservative systems. Invent. Math.18, 267–292 (1972) · Zbl 0247.58007 · doi:10.1007/BF01389816
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.