zbMATH — the first resource for mathematics

The non-smooth contact dynamics method. (English) Zbl 0959.74046
Summary: We present the main features of the non-smooth contact dynamics method: the use of dynamical equation, the non-smooth modelling of unilateral contact and Coulomb’s law, and fully implicit algorithms to solve the dynamical frictional contact problem for systems with numerous contacting points (in particular, for a large collection of rigid or deformable bodies). Emphasis is put on contact between deformable bodies. Illustrating numerical examples are given for granular materials, deep drawing, and buildings made of stone blocks.

74M15 Contact in solid mechanics
74S30 Other numerical methods in solid mechanics (MSC2010)
74E20 Granularity
Full Text: DOI
[1] Alart, P.; Curnier, A., A generalized Newton method for contact problems with friction, J. de Mécanique théorique et appliquée, 67-82, (1988), supplément nos. 1 to 7 · Zbl 0679.73046
[2] Jourdan, F.; Jean, M.; Alart, P., An alternative method between implicit and explicit schemes devoted to frictional contact problems in deep drawing simulation, J. mater. process. technol., 80-81, 257-262, (1998)
[3] Alart, P., Critère d’injectivité et de surjectivité pour certaines applications de R × n dans lui-même: application à la mécanique du contact, Modélisation mathématique et analyse numérique, 2, 27, 203-222, (1993), RAIRO · Zbl 0767.73064
[4] Cundall, P., A computer model for simulating progressive large scale movements of blocky rock systems, (), 132-150
[5] Glocker, C.; Pfeiffer, F., Multibody dynamics with unilateral contacts, (1996), John Wiley & Sons Oxford · Zbl 0922.70001
[6] Frémond, M., Collisions of rigid bodies, (), 397-404
[7] Boisse, J.C.; Daniel, J.C.; Gélin, J.C., A C^{∘} three nodes shell elements for non linear structure analysis, Int. J. numer. methods engrg., 37, (1994) · Zbl 0809.73063
[8] Hughes, T.J.R., The finite element method: linear static and dynamic finite element analysis, (1987), Prentice-Hall, Inc.
[9] Jourdan, F.; Alart, P.; Jean, M., A Gauss Seidel like algorithm to solve frictional contact problems, Comput. methods in appl. mech. engrg, 155, 31-47, (1998) · Zbl 0961.74080
[10] Jean, M., Unilateral contact and dry friction: time and space variables discretization, Arch. mech. warszawa, 40, 1, 677-691, (1988) · Zbl 0699.73075
[11] Jean, M., (), 463-486
[12] Wronski, M.; Jean, M., Some computational aspects of structural dynamics with frictional contact, (), 137-144
[13] Hughes, T.J.R.; Taylor, R.L.; Sackman, J.L.; Curnier, A.; Kanoknukulchai, W., A finite element method for a class of contact-impact problems, Comput. methods. appl. mech. engrg., 8, 1, 249-276, (1976) · Zbl 0367.73075
[14] Klarbring, A., Examples of non-uniqueness and non-existence of solutions to quasi-static problems with friction and varying contact surface, Modélisation mathématique et analyse numérique, 30, 2, 1185-1198, (1988), RAIRO · Zbl 0677.73078
[15] Klarbring, A., Derivation and analysis of rate boundary-value problems of frictional contact, European J. mech. A. (solids), 9, 53-85, (1990) · Zbl 0699.73074
[16] Duvaut, G.; Lions, J.L., Lions, LES inéquations en Mécanique et en physique, (1972), Dunod · Zbl 0298.73001
[17] Monteiro Marques, M.P.D., Differential inclusions in nonsmooth mechanical problems: shocks and dry friction, () · Zbl 0802.73003
[18] Oden, J.T.; Martins, J.A.C., Models and computational methods for dynamic friction phenomena, Comp. methods appl. mech. engrg., 52, 527-634, (1985) · Zbl 0567.73122
[19] Moreau, J.J., Unilateral contact and dry friction in finite freedom dynamics, () · Zbl 0703.73070
[20] Jean, M.; Moreau, J.J., (), 9-29
[21] Jean, M.; Moreau, J.J., Unilaterality and dry friction in the dynamics of rigid bodies collections, (), 31-48
[22] Curnier, A.; Alart, P., A mixed formulation for frictional contact problems prone to Newton like solution method, Comput. methods in appl. mech. engrg., 92, 3, 353-375, (1991) · Zbl 0825.76353
[23] Oden, J.T.; Pires, E.B., Non local and non linear friction law and variational principles for contact problems in elasticity, J. appl. mech., 50, 67-76, (1983) · Zbl 0515.73121
[24] Jean, M.; Pratt, E., A system of rigid bodies with dry friction, Int. J. engrg. sci., 497-513, (1985) · Zbl 0566.73091
[25] Vola, D.; Pratt, E.; Jean, M.; Raous, M., Consistent time discretization for dynamical contact problems and complementarity techniques, Revue européenne des eléments finis, 7, 1-3, 149-162, (1998) · Zbl 0916.73081
[26] Chabrand, P.; Dubois, F.; Raous, M., Programmation mathématique pour le contact avec frottement et comparaison avec d’autres méthodes, ()
[27] Radjai, F.; Jean, M.; Moreau, J.J.; Roux, S., Force distributions in dense two-dimensional granular systems, Phys. rev. lett., 77, 274, (1996)
[28] Laursen, T.A.; Simo, J.C., A continuum-based finite element formulation for the implicit solution of multybody, large deformation frictional contact problems, Int. J. numer. method in engrg., 36, 3451-3485, (1993) · Zbl 0833.73057
[29] Cundall, P.A.; Stack, O.D.L., A discrete numerical model for granular assemblies, Geotechnique, 29, 1, 47-65, (1979)
[30] Stewart, D.E., Existence of solutions to rigid body dynamics and the paradoxes of Painlevé, Compte rendu de l’académie des sciences, Sér, 1, 325, 689-693, (1997) · Zbl 0894.70006
[31] Jean, M.; Jourdan, F.; Tathi, B., Numerical dynamics for the simulation of deep drawing, ()
[32] Stewart, D.; Trinkle, J.C., An implicit time-stepping scheme for rigid body dynamics with inelastic collisions and Coulomb friction, Int. J. numer. method in engrg., 39, 2673-2691, (1996) · Zbl 0882.70003
[33] Moreau, J.J., Numerical aspects of the sweeping process, Comput. methods. appl. mech. engrg., 177, 329-349, (1999) · Zbl 0968.70006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.