×

zbMATH — the first resource for mathematics

Control Lyapunov functions for homogeneous “Jurdjevic-Quinn” systems. (English) Zbl 0959.93046
The paper concerns the feedback stabilization of a class of affine control processes using Lyapunov functions.

MSC:
93D15 Stabilization of systems by feedback
93D30 Lyapunov and storage functions
93C10 Nonlinear systems in control theory
PDF BibTeX XML Cite
Full Text: DOI Link EuDML
References:
[1] D. Aeyels, Stabilization of a class of nonlinear systems by smooth feedback control. Systems Control Lett. 5 ( 1985) 289-294. Zbl0569.93056 MR791542 · Zbl 0569.93056 · doi:10.1016/0167-6911(85)90024-6
[2] Z. Artstein, Stabilization with relaxed control. Nonlinear Anal. TMA 7 ( 1983) 1163-1173. Zbl0525.93053 MR721403 · Zbl 0525.93053 · doi:10.1016/0362-546X(83)90049-4
[3] A. Bacciotti, Local stabilizability of nonlinear control systems. World Scientifîc, Singapore, River Edge, London, Ser. Adv. Math. Appl. Sci. 8 ( 1992). Zbl0757.93061 MR1148363 · Zbl 0757.93061
[4] R.W. Brockett, Asymptotic stability and feedback stabilization, in Differential Geometric Control Theory, edited by R.W. Brockett, R.S. Millman and H.J. Sussmann. Basel-Boston, Birkäuser ( 1983) 181-191. Zbl0528.93051 MR708502 · Zbl 0528.93051
[5] R.T. Bupp, D.S. Bernstein and V.T. Coppola, A benchmark problem for nonlinear control design. Internat J. Robust Nonlinear Control 8 ( 1998) 307-310. MR1611573
[6] R.T. Bupp, D.S. Bernstein and V.T. Coppola, Experimental implementation of integrator back-stepping and passive nonlinear controllers on the RTAC testbed. Internat J. Robust Nonlinear Control 8 ( 1998) 435-457. Zbl0925.93352 MR1611580 · Zbl 0925.93352 · doi:10.1002/(SICI)1099-1239(19980415/30)8:4/5<435::AID-RNC355>3.0.CO;2-4
[7] J.-M. Coron, L. Praly and A.R. Teel, Feedback stabilization of nonlinear system: Sufficient conditions and lyapunov and input-output techniques, in Trends in Control, a European Perspective, edited by A. Isidori. Springer-Verlag ( 1995) 283-348. MR1448452
[8] L. Faubourg, La déformation de fonctions de Lyapunov, Rapport de DEA d’automatique et informatique industrielle. INRIA-Université de Lille 1 ( 1997).
[9] L. Faubourg and J.-B. Pomet, Strict control Lyapunov functions for homogeneous Jurdjevic-Quinn type systems, in Nonlinear Control Systems Design Symposium (NOLCOS’98), edited by H. Huijberts, H. Nijmeijer, A. van der Schaft and J. Scherpen. IFAC ( 1998) 823-829.
[10] L. Faubourg and J.-B. Pomet, Design of control Lyapunov functions for ”Jurdjevic-Quinn” systems, in Stability and Stabilization of Nonlinear Systems, edited by D. Aeyels et al. Springer-Verlag, Lecture Notes in Contr. & Inform. Sci. ( 1999) 137-150. Zbl0945.93607 MR1714587 · Zbl 0945.93607 · link.springer.de
[11] J.-P. Gauthier, Structure des Systèmes non-linéaires. Éditions du CNRS, Paris ( 1984). Zbl0606.58001 MR767635 · Zbl 0606.58001
[12] W. Hahn, Stability of Motion. Springer-Verlag, Berlin, New-York, Grundlehren Math. Wiss. 138 ( 1967). Zbl0189.38503 MR223668 · Zbl 0189.38503
[13] V. Jurdjevic and J.P. Quinn, Controllability and stability. J. Differential Equations 28 ( 1978) 381-389. Zbl0417.93012 MR494275 · Zbl 0417.93012 · doi:10.1016/0022-0396(78)90135-3
[14] M. Kawski, Homogeneous stabilizing feedback laws. Control Theory and Adv. Technol. 6 ( 1990), 497-516. MR1092775
[15] H.K. Khalil, Nonlinear Systems. MacMillan, New York, Toronto, Singapore ( 1992). Zbl0969.34001 MR1201326 · Zbl 0969.34001
[16] J. Kurzweil, On the inversion of Ljapunov’s second theorem on stability of motion. AMS Trans., Ser. II 24 ( 1956) 19-77. Zbl0127.30703 · Zbl 0127.30703 · eudml:11835
[17] J.-P. LaSalle, Stability theory for ordinary differential equations. J. Differential Equations 4 ( 1968) 57-65. Zbl0159.12002 MR222402 · Zbl 0159.12002 · doi:10.1016/0022-0396(68)90048-X
[18] W. Liu, Y. Chitour and E. Sontag, Remarks on finite gain stabilizability of linear systems subject to input saturation, in 32th IEEE Conf. on Decision and Control. San Antonio, USA ( 1993) 1808-1813.
[19] F. Mazenc, Stabilisation de trajectoires, ajout d’intégration, commandes saturées, Thèse de doctorat. École des Mines de Paris ( 1989).
[20] P. Morin, Robust stabilization of the angular velocity of a rigid body with two actuators. European J. Control 2 ( 1996) 51-56. Zbl0858.93057 · Zbl 0858.93057
[21] R. Outbib and G. Sallet, Stabilizability of the angular velocity of a rigid body revisited. Systems Control Lett. 18 ( 1992) 93-98. Zbl0743.93082 MR1149353 · Zbl 0743.93082 · doi:10.1016/0167-6911(92)90013-I
[22] G. Sallet, Historique des techniques de Jurdjevic-Quinn(private communication).
[23] R. Sépulchre, M. Janković and P.V. Kokotović, Constructive Nonlinear Control. Springer-Verlag, Comm. Control Engrg. Ser. ( 1997). Zbl1067.93500 MR1481435 · Zbl 1067.93500
[24] E.D. Sontag, Feedback stabilization of nonlinear systems, in Robust control of linear systems and nonlinear control, Vol. 2 of proceedings of MTNS’89, edited by M.A. Kaashoek, J.H. van Schuppen and A. Ran. Basel-Boston, Birkhäuser ( 1990) 61-81. Zbl0735.93063 MR1115377 · Zbl 0735.93063
[25] M. Spivak, A Comprehensive Introduction to Differential Geometry, Vol. 1. Publish or Perish, Houston, second Ed. ( 1979). Zbl0439.53005 · Zbl 0439.53005
[26] J. Tsinias, Remarks on feedback stabilizability of homogeneous systems. Control Theory and Adv. Technol. 6 ( 1990) 533-542. MR1092777
[27] J. Zhao and I. Kanellakopoulos, Flexible back-stepping design for tracking and disturbance attenuation. Internat J. Robust Nonlinear Control 8 ( 1998) 331-348. Zbl0925.93824 MR1611575 · Zbl 0925.93824 · doi:10.1002/(SICI)1099-1239(19980415/30)8:4/5<331::AID-RNC358>3.0.CO;2-A
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.